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Chapter 1

Introduction

This book provides a tutorial for the Persistence of Vision Ray-Tracer (POV-Ray). The documentation
applies to all platforms to which this version of POV-Ray is ported. The platform-specific documentation
is available for each platform separately.

This book is divided into five main parts:

1. This introduction which explains what POV-Ray is and what ray-tracing is. It gives a brief overview
of how to create ray-traced images.

. A “Beginning Tutorial” which explains step by step how to use the different features of POV-Ray.
. An “Advanced Tutorial” which contains more advanced tutorial topics.

. “POV-Ray questions and tips” gives answers to many frequently-asked questions about POV-Ray.

a b~ W N

. In the “Appendices” you will find some tips and hints, where to get the latest version and versions
for other platforms, the POV-Ray licence, information on compiling custom versions of POV-Ray,
suggested reading, contact addresses and legal information.

POV-Ray runs on Windows 9x/ME/NT/2000/XP, Macintosh Mac OS and Mac OS X, x86 Linux, UNIX,
and other platforms.

We assume that if you are reading this document then you already have POV-Ray installed and running.
However the POV-Team does distribute this file by itself in various formats including online on the Internet.
If you do not have POV-Ray or are not sure you have the official version or the latest version, see appendix
“What to do if you don’t have POV-Ray”.

This book covers only the generic parts of the program which are common to each vesicim.ver-
sion has platform-specific documentation not included here.We recommend you finish reading this
introductory section then read the platform-specific information before reading this tutorial.

The platform-specific docs will show you how to render a sample scene and will give you detailed descrip-
tion of the platform-specific features.

The Windows version documentation is available on the POV-Ray program’s Help menu or by pressing the
F1 key while in the program.

The Mac platform documentation is available via the “Help” menu as well as for viewing using a regular
web browser. Details may be found in theo¥-ray MacoS Read Me” Which contains information specific
to the Mac version of POV-Ray. It is best to read this document first.

The Unix / Linux version documentation can be found at the same place as the platform independent part.
Usually that is/usr/local/share/povray-3.2/html



2 Introduction

1.1 Program Description

You know you have been raytracing too long when ...
... You wonder which raytracer God used.
— David Kraics

The Persistence of Vision Ray-Tracer creates three-dimensional, photo-realistic images using a rendering
technique called ray-tracing. It reads in a text file containing information describing the objects and lighting

in a scene and generates an image of that scene from the view point of a camera also described in the text
file. Ray-tracing is not a fast process by any means, but it produces very high quality images with realistic
reflections, shading, perspective and other effects.

1.2 What is Ray-Tracing?

Ray-tracing is a rendering technique that calculates an image of a scene by simulating the way rays of light
travel in the real world. However it does its job backwards. In the real world, rays of light are emitted
from a light source and illuminate objects. The light reflects off of the objects or passes through transparent
objects. This reflected light hits our eyes or perhaps a camera lens. Because the vast majority of rays never
hit an observer, it would take forever to trace a scene.

Ray-tracing programs like POV-Ray start with their simulated camera and trace rays backwards out into the
scene. The user specifies the location of the camera, light sources, and objects as well as the surface texture
properties of objects, their interiors (if transparent) and any atmospheric media such as fog, haze, or fire.

For every pixel in the final image one or more viewing rays are shot from the camera, into the scene to
see if it intersects with any of the objects in the scene. These “viewing rays” originate from the viewer,
represented by the camera, and pass through the viewing window (representing the final image).

Every time an object is hit, the color of the surface at that point is calculated. For this purpose rays are

sent backwards to each light source to determine the amount of light coming from the source. These
“shadow rays” are tested to tell whether the surface point lies in shadow or not. If the surface is reflective

or transparent new rays are set up and traced in order to determine the contribution of the reflected and
refracted light to the final surface color.

Special features like inter-diffuse reflection (radiosity), atmospheric effects and area lights make it necessary
to shoot a lot of additional rays into the scene for every pixel.

1.3 Whatis POV-Ray?

The Persistence of Vision Ray-Tracer(tm) was developed from DKBTrace 2.12 (written by David K. Buck
and Aaron A. Collins) by a bunch of people (called the POV-Team™) in their spare time. The headquarters
of the POV-Team is on the interdgsee “Where to Find POV-Ray Files” for more details).

The POV-Ray package includes detailed instructions on using the ray-tracer and creating scenes. Many
stunning scenes are included with POV-Ray so you can start creating images immediately when you get the
package. These scenes can be modified so you do not have to start from scratch.

In addition to the pre-defined scenes, a large library of pre-defined shapes and materials is provided. You
can include these shapes and materials in your own scenes by just including the library file name at the top
of your scene file, and by using the shape or material name in your scene.

Lhttp://www.povray.org/



1.4 Features 3

1.4

Features

Here are some highlights of POV-Ray'’s features:

1.5

Easy to use scene description language.

Large library of stunning example scene files.

Standard include files that pre-define many shapes, colors and textures.

Very high quality output image files (up to 48-bit color).

16 and 24 bit color display on many computer platforms using appropriate hardware.
Create landscapes using smoothed height fields.

Many camera types, including perspective, orthographic, fisheye, etc.

Spotlights, cylindrical lights and area lights for sophisticated lighting.

Photons for realistic, reflected and refracted, caustics. Photons also interact with media.
Phong and specular highlighting for more realistic-looking surfaces.

Inter-diffuse reflection (radiosity) for more realistic lighting.

Atmospheric effects like atmosphere, ground-fog and rainbow.

Particle media to model effects like clouds, dust, fire and steam.

Several image file output formats including Targa, BMP (Windows only), PNG and PPM.
Basic shape primitives such as ... spheres, boxes, quadrics, cylinders, cones, triangle and planes.

Advanced shape primitives such as ... Tori (donuts), bezier patches, height fields (mountains), blobs,
guartics, smooth triangles, text, superquadrics, surfaces of revolution, prisms, polygons, lathes, frac-
tals, isosurfaces and the parametric object.

Shapes can easily be combined to create new complex shapes using Constructive Solid Geometry
(CSG). POV-Ray supports unions, merges, intersections and differences.

Objects are assigned materials called textures (a texture describes the coloring and surface properties
of a shape) and interior properties such as index of refraction and particle media (formerly known as
“halos”).

Built-in color and normal patterns: Agate, Bozo, Bumps, Checker, Crackle, Dents, Granite, Gradient,
Hexagon, Leopard, Mandel, Marble, Onion, Quilted, Ripples, Spotted, Spiral, Radial, Waves, Wood,
Wrinkles and image file mapping. Or build your own pattern using functions.

Users can create their own textures or use pre-defined textures such as ... Brass, Chrome, Copper,
Gold, Silver, Stone, Wood.

Combine textures using layering of semi-transparent textures or tiles of textures or material map files.
Display preview of image while rendering (not available on all platforms).

Halt and save a render part way through, and continue rendering the halted partial render later.

The Early History of POV-Ray

You know you have been raytracing too long when ...

... You hear a name beginning with the letter K and wonder if it's David Buck’s middle name.
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— Alex McLeod
OK, here’s a not-so brief history of POV-Ray (from the horse’s mouth, so to speak):

Back in 1986 or so, | had an Amiga. A friend who also has an Amiga downloaded the C code for a raytracer
for Unix from the Internet and brought it over. | thought it looked interesting and | ported it to the Amiga
and wrote the drivers to display it with Amiga graphics. The program only rendered untextured spheres
with a planar floor in black and white, but | was still impressed by it. | played with it a bit adding support
for color, but | eventually decided that | could do a better job writing a raytracer from scratch, so | scrapped
the C program and started my own - DKBTrace had begun.

| decided to start with general quadric surfaces since they could represent spheres, ellipsoids, cylinders,
planes, and more. | worked out the ray-quadric intersection calculations and used some calculus to work
out the surface normal to a quadric surface at a point. For the program structure, | decided to use an object-
oriented style since | had learned Smalltalk at university and it fit nicely. To make modeling more flexible, |
added CSG and procedural textures. In the end, | had an interesting little raytracer and | decided to release
it as freeware since | was planning to return to university to start my Master's degree and didn’t have time
to develop a commercial raytracer. Besides, there were already commercial renders for the Amiga that had
user interfaces (not just text files) and | felt I couldn’t sell it as a commercial product. | called it DKBTrace
and released it to local BBS’es and to the Internet.

DKBTrace was an Amiga-only program, but it attracted quite a lot of interest. | released several versions of
it adding in new features, better primitives, more texturing options, etc. Eventually | released version 2.01.

Sometime around 1987 or 1988, | was contacted by Aaron Collins. He had found the C code for DKBTrace
and ported it to the PC. He also added a Phong lighting model and a few more goodies. | was interested
in what he had done, so | contacted him to see if he wanted to help develop a new version of the program.
This one would be portable across more platforms (at university | had access to Unix workstations). We
eventually came up with version 2.12 which was the last version of DKBTrace ever released (1989).

While Aaron and | were working up to version 2.12, there was a group of people on CompuServe who were
very excited about DKBTrace and were creating all sorts of neat scenes for it. They were also expressing
frustration that Aaron and | weren’t able to add new features into DKBTrace fast enough. They started
talking about building a whole new raytracer from scratch that they could control and add the features they
wanted. At that time, | was starting to pursue other areas and was starting to drift away from raytracing.
So, | posted a message on CompuServe with the following offer: We could form a team to develop a new
raytracer using DKBTrace as a base. | had three requirements for this team. The resulting code had to be
freeware with the source code freely available, it had to remain portable between different platforms, and it
had to have a different name than DKBTrace.

The name DKBTrace was, of course, based on my initials: David Kirk Buck (there’s some little known
trivia for you). With a package developed by a team of people, it was inappropriate to use my initials. | was
also starting to drift away from raytracing (as | mentioned) and | didn’t want people thinking that | was the
head of the team forever. The name that was proposed was “Persistance Of Vision Raytracer” which was
shortened to POV-Ray. It worked in three ways. It was the result of a persistent vision of the developers,
it was a reference to the Salvador Dali work which depicted a distorted but realistic world, and the term
“persistance of vision” in biology referred to the ability to see an image that was presented briefly - almost
an after image.

In 1989, then, DKBTrace 2.12 was officially released and the POV-Ray project had begun. | worked with
the team for a few years after that. | was responsible for the Amiga port among other things. Drew Wells
was the project leader. Aaron Collins dropped out of the project around that time as well. Other early
members included Chris Young, Steve Anger, Tim Wegner, Dan Farmer, Bill Pulver (IBM drivers), and
Alexander Enzmann (quartics and cool math stuff). Chris Cason joined shortly after (my apologies if | left
anyone out - lots of people were involved). The reference to Robert Skinner in the credits for POV-Ray
was because we had a hard time finding a good noise function. In another raytracer, he had a great noise
function written by Robert Skinner, so we asked for and received permission to use it in POV-Ray.
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There was so much demand for us to release a new version that we created POV-Ray 0.5 and released it.
It was basically an enhanced DKBTrace with a similar grammar but many more features. Eventually, we
released POV-Ray 1.0 which had the new grammar and lots of new stuff. Drew dropped out later and Chris
Young took over as project leader.

It was around that time that | started to drift away from the POV-Ray team. The project had momentum and
could continue on without me. | was getting into different areas (physically based modeling and animation)
and no longer had the time to continue with POV-Ray. Around the release of version 2.0, | left the project
and the POV-Ray team developed it to its current state. Chris Cason is now the project leader.

Even though I'm no longer on the POV-Ray development team, | still like to follow its progress. | haven'’t
built my own scene by hand for years now (although | occasionally use Moray). | still enjoy the one thing
that drove me back in the DKBTrace days - | love seeing the works of other people who used my software.
Even though | can no longer call POV-Ray “my software”, | still enjoy admiring the artwork people create
with it. I'm constantly amazed at what people can do. It was always the feedback from user community
that drove me.

David Buck,
david [at] simberon.com

august 2001

1.5.1 The Original Creation Message

11906 S16/Raytraced Images
07-Mar-91 18:56:37

Sb: DKB Development

Fm: David Buck 70521,1371

To: All

Greetings all. This is my first posting to this group, so you’ll
have to excuse me if I make any mistakes in this post.

Finally, after several weeks of waiting, I've received my CompuServe
account. It’s nice to see that people are enjoying my raytracer
(DKB, of course). I have noticed, however, that you are less than
satisfied at the support I've been able to provide <grin>.

True, I'm the first to admit that the support is poor. I have
little time these days to work on graphics - it takes long enough

to answer all the questions I get asked on a daily basis from all
across the world.

My motivation for releasing the raytracer as Freely Distributable
software in the first place was to allow people to have some fun
with a program I’d developed for just that purpose. I don’t
consider it to be a professional package - I know it’s nowhere near
that good. I didn’t make it shareware, however, because I knew I
wouldn’t have much time for support. I didn’t want the hassles of
maintaining user lists, sending updates and notices, etc.

There has recently been a proposal in this forum that you write
your own raytracer to use instead of DKB. Perhaps I can make that
prospect a little bit easier. Suppose we take DKB and use it as a
base for a completely new system (the name "Renderdog" has

been tossed around, but I'm not fond of that one <g>). I would
like to propose the name "Software Taskforce on Animation and
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Rendering" or STAR. I would imagine that there would be
several packages developed such as:

STAR Light - the raytracer
STAR Guider - an animation system
STAR Maker - a user interface for StarLight

If you decide to do this, I would like to place a few rules on the
packages (or at least those developed from DKB):

- they will remain freely distributable

- support and maintenance of this new product will be undertaken
by the STAR team (including but not limited to myself)

- the programs will remain as portable as possible

What do you think of this proposal?

David Buck

1.5.2 The Name

More on how POV-Ray came to its name.

KRk hkhkhkkhhhkhkkhh kA hkhkhhkkdhhhkhkhhhhkdkhkhhhkkhkhhhkxrhhkdrhhhkkxhkhkkkxxhkx k%

from Chris Young, to whom I asked if POV’s name was related
to the title of a sci-fi book I had just found on a flea market.

KRk hkhkhkkhhhhkkhh kA hkhhhkkkhhhkkhkhh kA hkhhkhkkhkhhhkxxhhkrhhhkkxhkhkkkxxhx k%

Varley is one of my favorite authors and I’ve owned that book
long before POV-Ray existed. POV-Ray was originally going to be
called Starlight or StarlLite or something similar but somebody
else, I don’t know who, said we’d get in trademark trouble over
some existing product. Drew Wells was team leader and he picked
Persistence of Vision based on the properties of the human visual
system. I also felt there was a double meaning in that POV-Ray
was the continuation (or persistance) of David K. Buck’s DKB-Trace.
I warned Drew about Varley’s book but book titles aren’t as messy
as product names. Note also that Public Broadcasting System has
a documentary series called POV but that stands for Point Of View
which is the filmmaking term for hand-held camera, cinema-verite
style used in many documentaries.

I wanted to take our team name from the Fractint Stone Soup Group
and call us the Crystal Soup Group but I got voted down.

Chris Young, POV-Team Coordinator

KAKKA K KA A I kA Ak kA A Ak kA A Ak kA Ak hk kA hkhkk kA ko hk kA A hkhkhk kA hkkkkxrhkkkdkxk kv k%

from unknown source
KAk Kk hkkhkhkhkhkhkhkhkhkhkkhkhkkkkkhkhkhhhhhkhhkhkhkkkkkkhkkkkkhhkhkhkhhkhkhkhkkkkkkxkx k%

After the recent thread on the starting time I POV-Ray I did

a search and found this post to this very news group from
David Buck himself. The message places the birth of the POV-Ray
project to be in May of 1991. A very historic event!
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I hope I'm not stepping on toes by re-posting
it @)

Harold

Sun, 19 Feb 1995 19:14:44 GMT

(STEERPIKE) says:

>I had always presumed that Persistance of Vision was a pun on
>the name of Salvador Dali’s painting "The Persistance of
>Memory". Is this right, and if not, how did POV-Ray come to

> have such a poetic name? :)

The POV-Ray project started in May 1991 when I first proposed the
idea to a group of people on CompuServe. They liked my DKBTrace
raytracer but didn’t like the fact that I was too slow adding new
features to it. They were going to re-write a raytracer from
scratch, but I suggested that after version 2.12 of DKBTrace, they
could take the code as is and develop it from there into a new
raytracer. The first name was STAR - an acronym for something or
other. Then someone in the group came up with "Persistance of
Vision". We liked it because of its reference to Dali (I

believe the painting was actually called Persistance of Vision - am
I mistaken?). Moreover, it seemed to symbolize the team who
"Persisted" to achieve their "Vision". The

third reference was to the phychological effect that seeing an image
flashed on a screen causes you to retain that image in short term
memory. Thus, your memory was a representation of reality but not
really reality. They all seemed to fit together to make a nice name.
Early on, we were abbreviating the name to PVRay, but we were
concerned about a commercial product called PV-Wave. We agreed to
change the abbreviation to POV-Ray and standardize on the spelling.

>David Buck

1.5.3 A Historic 'Version History’

The version history as it was included in PV-Ray 0.5 BETA. Notice the name changes...

Persistence of Vision Raytracer Version History

PV-Ray was originally DKBTrace Ver. 2.12 written by David Buck. He
donated the rights to his source code so the PV-Team could enhance
this raytracer as a group project similar to Fractint. The source
code for PV-Ray will always be freely distributable subject to the
restrictions in the header files. Thanks David, for your generous
gift!

Version 0.02 BETA Release 7/29/91 (as STAR-Light)
First version is still basically DKBTrace 2.12 with a few new
features.

- Materials mapping added by Drew Wells. (see matmap.dat)
ONION \& LEOPARD textures added by Scott Taylor.

- Time to trace display added by Bill Pulver.

- Grayscale display (+g) for IBM-PC’s added by Scott Taylor.
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- Small wood texture bug fixed to create true cylinders.

- Verbose now displays more info including file being traced.
- Option +vO added to enable old-style terse verbose.

- Texture.c broken into smaller modules.

- PAINTED1, 2, \& 3 added for developers.

- BUMPY1, 2, \& 3 added for developers.

PvRay Version 0.5 BETA Release 9/07/91

Many more changes this time around, including...

- Many enhancements from Alexander Enzmann
- Bezier bicubic subpatches
- Polynomial surfaces
- New mapping types (sphere, etc.)
- Sturmian sequences
- Clipping shapes
- (have I forgotten anything??)
- Lots of hard work and enhancements by Aaron Collins
- Height fields by Doug Muir
- Bump Mapping by Doug Muir and Drew Wells
- Interpolation by Girish T. Hagan adapted for mapping by Drew Wells
- # and ; are now ignored.
- case_sensitive keywords and commandline option added by Drew Wells
> case_sensitive_yes -- All words checked for exact case.
Keywords must be in upper case.
(*0ld DKB Style*)
> case_sensitive_no -- Case is ignored for all words.
> case_sensitive_opt -- DEFAULT - All words checked for exact
case except keywords. Keywords will be
accepted in upper and/or lower case.
> command line -- /ty = yes, /tn = no, /to = opt
- cnvdat.c to convert old dat files included with pvsrc.
- C++ style commenting - // ignore to end of line.
and /* ignore between braces */ nesting not allowed.
- New default style verbose trace info (+vl)
- Old-new style verbose (+v0)
- Verbose trace info outputs to stderr so that stats can be
redirected to file.
- New stats display outputs to stdout for better redirection.
- New lighting routines by David Buck.
- The declared colors Red, Green, and Blue in colors.dat are now
CRed, CBlue, CGreen.
- The declared quadric Sphere in shapes.dat is now QSphere.
- Textures.dat has been cleaned up and commented.

1.6 How Do | Begin?

POV-Ray scenes are described in a special text language called a “scene description language”. You will
type commands into a plain text file and POV-Ray will read it to create the image. The process of running
POV-Ray is a little different on each platform or operating system. You should read the platform-specific
documentation as suggested earlier in this introduction. It will tell you how to command POV-Ray to
turn your text scene description into an image. You should try rendering several sample images before
attempting to create your own.
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Once you know how to run POV-Ray on your computer and your operating system, you can proceed with
the tutorial which follows. The tutorial explains how to describe the scene using the POV-Ray language.

1.7 Notation and Basic Assumptions

Throughout the tutorial and reference books, the consistent notation is used to mark keywords of the scene
description language, command line switches, INI file keywords and file names. All POV-Ray scene
descriptionlanguage keywords, punctuation and command-line switches are mono-spaced. For example
sphere, 4.0 * sin(45.0) OF +W640 +H480. Syntax descriptions are mono-spaced and all caps. For example
required syntax items are written likentax_11eM, While optional syntax items are written in square braces

like [synTax_1TEM]. If ONe or more syntax items are required, the ellipsis will be appendediikex_-

ITEM.... In case zero or more syntax items are allowed, the syntax item will be written in square braces
with appended ellipsis likesyntax_1TEM. . . ]. A float value or expression is written mixed case likeue_-

1, while a vector value or expression is written in mixed case in angle bracesiikee_1>. Choices are
represented by a vertical bar between syntax items. For example a choice between three items would be
written astteM1 | ITEM2 | ITEM3. Further, a certain lists and arrays also require square braces as part of
the language rather than the language description. When square braces are required as part of the syntax,
they will be separated from the contained syntax item specification with a spacesilike ].

Note: POV-Ray is a command-line program on Unix and other text-based operating systems and is menu-
driven on Windows and Macintosh platforms. Some of these operating systems use folders to store files
while others use directories. Some separate the folders and sub-folders with a slash chirbatge-6lash
character), or others.

We have tried to make this documentation as generic as possible but sometimes we have to refer to folders,
files, options etc. and there is no way to escape it. Here are some assumptions we make...

1. Youinstalled POV-Ray in thect \povray36” directory. For MS-Dos this is probably true but for Unix
it might be “/usr/povray3”, or for Windows it might be €:\program Files\POV-Ray for Windows
v3.6", for Mac it might be *MyHD:Apps:POV-Ray 36:”, Or you may have used some other drive or
directory. So if we tell you that “Include files are stored in thevray36\include directory,” we
assume you can translate that to something likevrav36: INCLUDE” Or “C:\Program Files\POV-
Ray for Windows v3.6\include” Or whatever is appropriate for your platform, operating system and
installation.

2. POV-Ray uses INI files and/or command-line switches (if available) to choose options in all versions,
but Windows and Mac also use dialog boxes or menu choices to set options. We will describe options
assuming you are using switches or INI files when describing what the options do. We have taken
care to use the same terminology in designing menus and dialogs as we use in describing switches or
INI keywords. See your version-specific documentation on menu and dialogs.

3. Some of you are reading this using a help-reader, built-in help, web-browser, formatted printout, or
plain text file. We assume you know how to get around in which ever medium you are using. We
will say “See the chapter on "Setting POV-Ray Options* we assume you can click, scroll, browse,
flip pages or whatever to get there.
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Chapter 2

Getting Started

You know you have been raytracing too long when ...
... You actually read all the documentation that comes with programs.
— AmaltheaJ5

The beginning tutorial explains step by step how to use POV-Ray’s scene description language to create
your own scenes. The use of almost every feature of POV-Ray’s language is explained in detail. We will
learn basic things like placing cameras and light sources. We will also learn how to create a large variety of
objects and how to assign different textures to them. The more sophisticated features like radiosity, interior,
media and atmospheric effects will be explained in detalil.

2.1 Our First Image

You know you have been raytracing too long when ...
. You have gone full circle and find your self writing a scene that contains only a shiny sphere
hovering over a green and yellow checkered plane ...
—Ken Tyler

We will create the scene file for a simple picture. Since ray-tracers thrive on spheres, that is what we will
render first.

2.1.1 Understanding POV-Ray’s Coordinate System

First, we have to tell POV-Ray where our camera is and where it is looking. To do this, we use 3D
coordinates. The usual coordinate system for POV-Ray has the positive y-axis pointing up, the positive
X-axis pointing to the right, and the positive z-axis pointing into the screen as follows:

This kind of coordinate system is called a left-handed coordinate system. If we use our left hand’s fingers
we can easily see why it is called left-handed. We just point our thumb in the direction of the positive x-axis
(to the right), the index finger in the direction of the positive y-axis (straight up) and the middle finger in the
positive z-axis direction (forward). We can only do this with our left hand. If we had used our right hand
we would not have been able to point the middle finger in the correct direction.

The left hand can also be used to determine rotation directions. To do this we must perform the famous
"Computer Graphics Aerobit®xercise. We hold up our left hand and point our thumb in the positive
direction of the axis of rotation. Our fingers will curl in the positive direction of rotation. Similarly if we
point our thumb in the negative direction of the axis our fingers will curl in the negative direction of rotation.



12 Getting Started

-

Figure 2.1: The left-handed coordinate system

f/f x

Figure 2.2: Computer Graphics Aerobics

In the above illustration, the left hand is curling around the x-axis. The thumb points in the positive x
direction and the fingers curl over in the positive rotation direction.

If we want to use a right-handed system, as some CAD systems and modelers dahthesctor in the
camera specification needs to be changed. See the detailed description in "Handedness". In a right-handed
system we use our right hand for the "Aerobics”.

There is some controversy over whether POV-Ray’s method of doing a right-handed system is really proper.
To avoid problems we stick with the left-handed system which is not in dispute.

2.1.2 Adding Standard Include Files

You know you have been raytracing too long when ...
you've just seen Monsters.Inc at the movies, and you are wondering when they will release
Monsters.Pov.
— Fabien Mosen

Using our personal favorite text editor, we create a file called.pov. Some versions of POV-Ray come
with their own built-in text editor which may be easier to use. We then type in the following text. The input
is case sensitive, so we have to be sure to get capital and lowercase letters correct.

#include "colors.inc" // The include files contain
#include "stones.inc" // pre-defined scene elements
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The first include statement reads in definitions for various useful colors. The second include statement reads
in a collection of stone textures. POV-Ray comes with many standard include files. Others of interest are:

#include "textures.inc" // pre-defined scene elements
#include "shapes.inc"

#include "glass.inc"

#include "metals.inc"

#include "woods.inc"

They read pre-defined textures, shapes, glass, metal, and wood textures. It is a good idea to have a look
through them to see a few of the many possible shapes and textures available.

We should only include files we really need in our scene. Some of the include files coming with POV-Ray
are quite large and we should better save the parsing time and memory if we do not need them. In the
following examples we will only use thelors.inc, andstones.inc include files.

We may have as many include files as needed in a scene file. Include files may themselves contain include
files, but we are limited to declaring includes nested only ten levels deep.

Filenames specified in the include statements will be searched for in the current directory first. If it fails to
find your .Inc files in the current directory, POV-Ray searches any “library paths” that you have specified.
Library paths are options set by the command-line switch oribrary_path option. See the chapter
“Setting POV-Ray Options” for more information on library paths.

Because it is more useful to keep include files in a separate directory, standard installations of POV-Ray
place these files in the \povray3,include directory (replace 'gpovray3’ with the actual directory that

you installed POV-Ray in). If you get an error message saying that POV-Ray cannotwpers” inc” or

other include files, make sure that you specify the library path properly.

2.1.3 Adding a Camera

Thecamera statement describes where and how the camera sees the scene. It gives x-, y- and z-coordinates to
indicate the position of the camera and what part of the scene it is pointing at. We describe the coordinates
using a three-parntector A vector is specified by putting three numeric values between a pair of angle
brackets and separating the values with commas. We add the following camera statement to the scene.

camera {
location <0, 2, -3>
look_at <0, 1, 2>
}

Briefly, 1ocation <0,2,-3> places the camera up two units and back three units from the center of the
ray-tracing universe which is at0,0,0>. By default +z is into the screen and -z is back out of the screen.

Also look_at <0,1,2> rotates the camera to point at the coordinat@sl,2>. A point 1 unit up from the
origin and 2 units away from the origin. This makes it 5 units in front of and 1 unit lower than the camera.
The1look_at point should be the center of attention of our image.

2.1.4 Describing an Object

Now that the camera is set up to record the scene, let’s place a yellow sphere into the scene. We add the
following to our scene file:

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
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}
}

The first vector specifies the center of the sphere. In this example the x coordinate is zero so it is centered
left and right. It is also at y=1 or one unit up from the origin. The z coordinate is 2 which is five units in
front of the camera, which is at z=-3. After the center vector is a comma followed by the radius which in
this case is two units. Since the radius is half the width of a sphere, the sphere is four units wide.

2.1.5 Adding Texture to an Object

After we have defined the location and size of the sphere, we need to describe the appearance of the surface.
Thetexture statement specifies these parameters. Texture blocks describe the color, bumpiness and finish
properties of an object. In this example we will specify the color only. This is the minimum we must do.

All other texture options except color will use default values.

The color we define is the way we want an object to look if fully illuminated. If we were painting a picture

of a sphere we would use dark shades of a color to indicate the shadowed side and bright shades on the
illuminated side. However ray-tracing takes care of that for you. We only need to pick the basic color
inherent in the object and POV-Ray brightens or darkens it depending on the lighting in the scene. Because
we are defining the basic color the object actualigs rather than how itooks the parameter is called
pigment.

Many types of color patterns are available for use in a pigment statement. The keywerdpecifies that
the whole object is to be one solid color rather than some pattern of colors. We can use one of the color
identifiers previously defined in the standard include filglors. inc.

If no standard color is available for our needs, we may define our own color by using the color keyword
followed byred, green, and blue keywords specifying the amount of red, green and blue to be mixed. For
example a nice shade of pink can be specified by:

color red 1.0 green 0.8 blue 0.8

Note: the international - rather than American - form “colour” is also acceptable and may be used anywhere
that “color” may be used.

The values after each keyword should be in the range from 0.0 to 1.0. Any of the three components not
specified will default to 0. A shortcut notation may also be used. The following produces the same shade
of pink:

color rgb <1.0, 0.8, 0.8>
In many cases the1or keyword is superfluous, so the shortest way to specify the pink color is:
rgb <1.0, 0.8, 0.8>

Colors are explained in more detail in section “Specifying Colors”.

2.1.6 Defining a Light Source

One more detail is needed for our scene. We need a light source. Until we create one, there is no light in
this virtual world. Thus we add the line

light_source { <2, 4, -3> color White}
to the scene file to get our first complete POV-Ray scene file as shown below.

#include "colors.inc"
background { color Cyan }
camera {
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location <0, 2, -3>
look_at <0, 1, 2>
}
sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
}
}
light_source { <2, 4, -3> color White}

The vector in theight _source statement specifies the location of the light as two units to our right, four
units above the origin and three units back from the origin. The light source is an invisible tiny point that
emits light. It has no physical shape, so no texture is needed.

That's it! We close the file and render a small picture of it using whatever methods you used for your
particular platform. If you specified a preview display it will appear on your screen. If you specified an
output file (the default is file output on), then POV-Ray also created a file.

Note: if you do not have high color or true color display hardware then the preview image may look poor
but the full detail is written to the image file regardless of the type of display.

The scene we just traced is not quite state of the art but we will have to start with the basics before we soon
get to much more fascinating features and scenes.

2.2 Basic Shapes

So far we have just used the sphere shape. There are many other types of shapes that can be rendered by
POV-Ray. The following sections will describe how to use some of the more simple objects as a replacement
for the sphere used above.

2.2.1 Box Object

Thebox is one of the most common objects used. We try this example in place of the sphere:

box {

<-1, 0, -1>, // Near lower left corner

<1, 0.5, 3> // Far upper right corner

texture {
T_Stone25 // Pre-defined from stones.inc
scale 4 // Scale by the same amount in all

// directions
}
rotate y*20 // Equivalent to "rotate <0,20,0>"

}

In the example we can see that a box is defined by specifying the 3D coordinates of its opposite corners. The
first vector is generally the minimum x-, y- and z-coordinates and the 2nd vector should be the maximum
X-, y- and z-values however any two opposite corners may be used. Box objects can only be defined parallel
to the axes of the world coordinate system. We can later rotate them to any angle.

Note: we can perform simple math on values and vectors. In the rotate parameter we multiplied the vector
identifiery by 20. This is the same as0,1,0>*20 or <0,20,0>.
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2.2.2 Cone Object

Here is another example showing how to usems:

cone {
<0, 1, 0>, 0.3 // Center and radius of one end
<1, 2, 3>, 1.0 // Center and radius of other end
texture { T_Stone25 scale 4 }

}

The cone shape is defined by the center and radius of each end. In this example one end is at location
<0,1,0> and has a radius of 0.3 while the other end is centeredle,3> with a radius of 1. If we want

the cone to come to a sharp point we must use radius=0. The solid end caps are parallel to each other and
perpendicular to the cone axis. If we want an open cone with no end caps we have to add the keyword

after the 2nd radius like this:

cone {
<0, 1, 0>, 0.3 // Center and radius of one end
<1, 2, 3>, 1.0 // Center and radius of other end
open // Removes end caps
texture { T_Stone25 scale 4 }

2.2.3 Cylinder Object

We may also define a/1inder like this:

cylinder {
<0, 1, 0>, // Center of one end
<1, 2, 3>, // Center of other end
0.5 // Radius
open // Remove end caps

texture { T_Stone25 scale 4 }

2.2.4 Plane Object

Let’s try out a computer graphics standéfthe Checkered Floor”.We add the following object to the first
version of thedemo . pov file, the one including the sphere.

plane { <0, 1, 0>, -1
pigment {
checker color Red, color Blue
}
}

The object defined here is an infinite plane. The veetdrl,0> is the surface normal of the plane (i.e. if

we were standing on the surface, the normal points straight up). The number afterward is the distance that
the plane is displaced along the normal from the origin — in this case, the floor is placed at y=-1 so that the
sphere at y=1, radius=2, is resting on it.

Note: even though there is neexture statement there is an implied texture here. We might find that
continually typing statements that are nested tikecure {pigment} can get to be tiresome so POV-Ray
let’'s us leave out thetexture statement under many circumstances. In general we only need the texture
block surrounding a texture identifier (like the.stone25 example above), or when creating layered textures
(which are covered later).
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This pigment uses the checker color pattern and specifies that the two colors red and blue should be used.

Because the vectoksl,0,0>, <0,1,0> and<0,0,1> are used frequently, POV-Ray has three built-in vector
identifiers x, y andz respectively that can be used as a shorthand. Thus the plane could be defined as:

plane { y, -1
pigment { ... }
}

Note: that we do not use angle brackets around vector identifiers.

Looking at the floor, we notice that the ball casts a shadow on the floor. Shadows are calculated very
accurately by the ray-tracer, which creates precise, sharp shadows. In the real world, penumbral or “soft”
shadows are often seen. Later we will learn how to use extended light sources to soften the shadows.

2.2.5 Torus Object

A torus can be thought of as a donut or an inner-tube. It is a shape that is vastly useful in many kinds of
CSG so POV-Ray has adopted this 4th order quartic polynomial as a primitive shape. The syntax for a torus
is so simple that it makes it a very easy shape to work with once we learn what the two float values mean.
Instead of a lecture on the subject, let’s create one and do some experiments with it.

We create a file calletbrdeno.pov and edit it as follows:

#include "colors.inc"
camera f{
location <0, .1, -25>
look_at 0
angle 30
}
background { color Gray50 } // to make the torus easy to see
light_source { <300, 300, -1000> White }

torus {
4, 1 // major and minor radius
rotate -90*x // so we can see it from the top

pigment { Green }

}

We trace the scene. Well, it is a donut alright. Let’s try changing the major and minor radius values and see
what happens. We change them as follows:

torus { 5, .25 // major and minor radius
That looks more like a hula-hoop! Let's try this:

torus { 3.5, 2.5 // major and minor radius
Whoa! A donut with a serious weight problem!

With such a simple syntax, there is not much else we can do to a torus besides change its texture... oris
there? Let's see...

Tori are very useful objects in CSG. Let's try a little experiment. We make a difference of a torus and a box:

difference {
torus {
4, 1
rotate x*-90 // so we can see it from the top
}
box { <=5, -5, -1>, <5, 0, 1>}
pigment { Green }
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}

Interesting... a half-torus. Now we add another one flipped the other way. Only, let's declare the original
half-torus and the necessary transformations so we can use them again:

#declare Half_Torus = difference {
torus {
4, 1
rotate -90*x // so we can see it from the top
}
box { <=5, -5, -1>, <5, 0, 1> }
pigment { Green }
}
#declare Flip_It_Over = 180*x;
#declare Torus_Translate = 8; // twice the major radius

Now we create a union of twex1f_Torus objects:

union {
object { Half_Torus }
object { Half_Torus
rotate Flip_It_Over
translate Torus_Translate*x

}

This makes an S-shaped object, but we cannot see the whole thing from our present camera. Let's add a few
more links, three in each direction, move the object along the +z-direction and rotate it about the +y-axis so
we can see more of it. We also notice that there appears to be a small gap where the half Tori meet. This is
due to the fact that we are viewing this scene from directly on the x-z-plane. We will change the camera’s
y-coordinate from 0 to 0.1 to eliminate this.

union {
object { Half_Torus }
object { Half_Torus
rotate Flip_It_Over
translate x*Torus_Translate
}
object { Half_Torus
translate x*Torus_Translate*2
}
object { Half_Torus
rotate Flip_It_Over
translate x*Torus_Translate*3
}
object { Half_Torus
rotate Flip_It_Over
translate -x*Torus_Translate
}
object { Half_Torus
translate -x*Torus_Translate*2
}
object { Half_Torus
rotate Flip_It_Over
translate -x*Torus_Translate*3
}
object { Half_Torus
translate -x*Torus_Translate*4
}
rotate y*45
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translate z*20

}

Rendering this we see a cool, undulating, snake-like something-or-other. Neato. But we want to model
something useful, something that we might see in real life. How about a chain?

Thinking about it for a moment, we realize that a single link of a chain can be easily modeled using two
half tori and two cylinders. We create a new file. We can use the same camera, background, light source
and declared objects and transformations as we useideno . pov:

#include "colors.inc"
camera {
location <0, .1, -25>
look_at 0
angle 30
}
background { color Gray50 }
light_source{ <300, 300, -1000> White }
#declare Half_Torus = difference {
torus {
4,1
sturm
rotate x*-90 // so we can see it from the top
}
box { <=5, -5, -1>, <5, 0, 1>}
pigment { Green }
}
#declare Flip_It_Over = x*180;
#declare Torus_Translate = 8;

Now, we make a complete torus of two half tori:

union {

object { Half_Torus }

object { Half_Torus rotate Flip_It_Over }
}

This may seem like a wasteful way to make a complete torus, but we are really going to move each half
apart to make room for the cylinders. First, we add the declared cylinder before the union:

#declare Chain_Segment = cylinder {
<0, 4, 0>, <0, -4, 0>, 1
pigment { Green }

}

We then add tw@hain_segments to the union and translate them so that they line up with the minor radius
of the torus on each side:

union {
object { Half_Torus }
object { Half_Torus rotate Flip_It_Over }
object { Chain_Segment translate x*Torus_Translate/2 }
object { Chain_Segment translate -x*Torus_Translate/2 }

}

Now we translate the two half tori +y and -y so that the clipped ends meet the ends of the cylinders. This
distance is equal to half of the previously declaredis_Translate:

union {
object {
Half_Torus
translate y*Torus_Translate/2
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}
object {

Half_ Torus

rotate Flip_It_Over

translate -y*Torus_Translate/2
}
object {

Chain_Segment

translate x*Torus_Translate/2
}
object {

Chain_Segment

translate -x*Torus_Translate/2

}

We render this and voila! A single link of a chain. But we are not done yet! Whoever heard of a green
chain? We would rather use a nice metallic color instead. First, we remove any pigment blocks in the
declared tori and cylinders. Then we add a declaration for a golden texture just before the union that creates
the link. Finally, we add the texture to the union and declare it as a single link:

#declare Half_Torus = difference {
torus {
4,1
sturm
rotate x*-90 // so we can see it from the top

}
box { <=5, -5, -1>, <5, 0, 1>}

#declare Chain_Segment = cylinder {
<0, 4, 0>, <0, -4, 0>, 1

#declare Chain_Gold = texture {
pigment { BrightGold }

finish {
ambient .1
diffuse .4

reflection .25
specular 1
metallic

#declare Link = union {
object {
Half_Torus
translate y*Torus_Translate/2
}
object {
Half_Torus
rotate Flip_It_Over
translate -y*Torus_Translate/2
}
object {
Chain_Segment
translate x*Torus_Translate/2
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}
object {

Chain_Segment

translate -x*Torus_Translate/2
} texture { Chain_Gold }

Now we make a union of two links. The second one will have to be translated +y so that its inner wall just
meets the inner wall of the other link, just like the links of a chain. This distance turns out to be double
the previously declaretbrus_Translate minus 2 (twice the minor radius). This can be described by the
expression:

Torus_Translate*2-2*y
We declare this expression as follows:
#declare Link_Translate = Torus_Translate*2-2*y;

In the object block, we will use this declared value so that we can multiply it to create other links. Now, we
rotate the second linkeo*y so that it is perpendicular to the first, just like links of a chain. Finally, we scale
the union by 1/4 so that we can see the whole thing:

union {
object { Link }
object { Link translate y*Link_Translate rotate y*90 }
scale .25

We render this and we will see a very realistic pair of links. If we want to make an entire chain, we must
declare the above union and then create another union of this declared object. We must be sure to remove
the scaling from the declared object:

#declare Link_Pair =
union {
object { Link }
object { Link translate y*Link_Translate rotate y*90 }

Now we declare our chain:

#declare Chain = union {

object { Link_Pair}

object { Link_Pair translate y*Link_Translate*2

object { Link_Pair translate vy*Link_Translate*4
object { Link_Pair translate y*Link_Translate*6
object { Link_Pair translate -y*Link_Translate*2
object { Link_Pair translate -y*Link_Translate*4
object { Link_Pair translate -y*Link_Translate*6

And finally we create our chain with a couple of transformations to make it easier to see. These include
scaling it down by a factor of 1/10, and rotating it so that we can clearly see each link:

object { Chain scale .1 rotate <0, 45, -45> }

We render this and we should see a very realistic gold chain stretched diagonally across the screen.
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Figure 2.3: The torus object can be used to create chains.

2.3 CSG Objects

You know you have been raytracing too long when ...
... Your friends are used to the fact that you will suddenly stop walking in order to look at objects and
figure out how to do them as CSGs.
— Jeff Lee

Constructive Solid Geometry, or CSG, is a powerful tool to combine primitive objects to create more
complex objects as shown in the following sections.

2.3.1 Whatis CSG?

CSGstands forConstructive Solid GeometrfPOV-Ray allows us to construct complex solids by combining
primitive shapes in four different ways. In theion statement, two or more shapes are added together. With
theintersection Statement, two or more shapes are combined to make a new shape that consists of the area
common to both shapes. Thetfference statement, an initial shape has all subsequent shapes subtracted
from it.

And last but not leasterge, which is like a union where the surfaces inside the union are removed (useful
in transparent CSG objects). We will deal with each of these in detail in the next few sections.

CSG objects can be extremely complex. They can be deeply nested. In other words there can be unions
of differences or intersections of merges or differences of intersections or even unions of intersections of

differences of merges... ad infinitum. CSG objects are (almost always) finite objects and thus respond to

auto-bounding and can be transformed like any other POV primitive shape.

2.3.2 CSG Union

Let'’s try making a simple union. Create a file calle@gdemo.pov and edit it as follows:

#include "colors.inc"
camera {
location <0, 1, -10>
look_at 0
angle 36
}
light_source { <500, 500, -1000> White }
plane { y, -1.5



2.3 CSG Objects 23

pigment { checker Green White }

}

Let's add two spheres each translated 0.5 units along the x-axis in each direction. We color one blue and
the other red.

sphere { <0, 0, 0>, 1
pigment { Blue }
translate -0.5%x

}

sphere { <0, 0, 0>, 1
pigment { Red }
translate 0.5%*x

}

We trace this file and note the results. Now we place a union block around the two spheres. This will create
a single CSG union out of the two objects.

union{
sphere { <0, 0, 0>, 1
pigment { Blue }
translate -0.5*x
}
sphere { <0, 0, 0>, 1
pigment { Red }
translate 0.5%x
}
}

We trace the file again. The union will appear no different from what each sphere looked like on its own,
but now we can give the entire union a single texture and transform it as a whole. Let’s do that now.

union{
sphere { <0, 0, 0>, 1
translate -0.5%x

}
sphere { <0, 0, 0>, 1
translate 0.5%x

}

pigment { Red }

scale <1, .25, 1>

rotate <30, 0, 45>
}

We trace the file again. As we can see, the object has changed dramatically. We experiment with different
values of scale and rotate and try some different textures.

There are many advantages of assigning only one texture to a CSG object instead of assigning the texture
to each individual component. First, it is much easier to use one texture if our CSG object has a lot of
components because changing the objects appearance involves changing only one single texture. Second,
the file parses faster because the texture has to be parsed only once. This may be a great factor when doing
large scenes or animations. Third, using only one texture saves memory because the texture is only stored
once and referenced by all components of the CSG object. Assigning the texture to all n components means
that it is stored n times.

2.3.3 CSG Intersection

Now let's use these same spheres to illustraterthe sect ion CSG object. We change the woiglion to
intersection and delete thecale androtate Statements:
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intersection {
sphere { <0, 0, 0>, 1
translate -0.5*x

}
sphere { <0, 0, 0>, 1
translate 0.5%x

}
pigment { Red }

}

We trace the file and will see a lens-shaped object instead of the two spheres. This is because an intersection
consists of the area shared by both shapes, in this case the lens-shaped area where the two spheres overlap.
We like this lens-shaped object so we will use it to demonstrate differences.

2.3.4 CSG Difference

We rotate the lens-shaped intersection about the y-axis so that the broad side is facing the camera.

intersection{
sphere { <0, 0, 0>, 1
translate -0.5%x
}
sphere { <0, 0, 0>, 1
translate 0.5%x
}
pigment { Red }
rotate 90*y
}

Let’s create a cylinder and stick it right in the middle of the lens.

cylinder { <0, 0, -1> <0, 0, 1>, .35
pigment { Blue }
}

We render the scene to see the position of the cylinder. We will placefarence block around both the
lens-shaped intersection and the cylinder like this:

difference {
intersection {
sphere { <0, 0, 0>, 1
translate -0.5*x
}
sphere { <0, 0, 0>, 1
translate 0.5*x
}
pigment { Red }
rotate 90*y
}
cylinder { <0, 0, -1> <0, 0, 1>, .35
pigment { Blue }
}
}

We render the file again and see the lens-shaped intersection with a neat hole in the middle of it where the
cylinder was. The cylinder has beemtracted from the intersection. Note that the pigment of the cylinder
causes the surface of the hole to be colored blue. If we eliminate this pigment the surface of the hole will
be black, as this is the default color if no color is specified.
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OK, let’s get a little wilder now. Let’s declare our perforated lens object to give it a name. Let’s also
eliminate all textures in the declared object because we will want them to be in the final union instead.

#declare Lens_With_Hole = difference ({
intersection {
sphere { <0, 0, 0>, 1
translate -0.5%x
}
sphere { <0, 0, 0>, 1
translate 0.5%x
}
rotate 90*y
}
cylinder { <0, 0, -1> <0, 0, 1>, .35}
}

Let's use a union to build a complex shape composed of copies of this object.

union {
object { Lens_With_Hole translate <-.65, .65, 0> }
object { Lens_With_Hole translate <.65, .65, 0> }
object { Lens_With_Hole translate <-.65, -.65, 0> }
object { Lens_With_Hole translate <.65, -.65, 0> }
pigment { Red }

}

We render the scene. An interesting object to be sure. But let’s try something more. Let's make it a
partially-transparent object by adding some filter to the pigment block.

union {
object { Lens_With_Hole translate <-.65, .65, 0> }
object { Lens_With_Hole translate <.65, .65, 0> }
object { Lens_With_Hole translate <-.65, -.65, 0> }
object { Lens_With_Hole translate <.65, -.65, 0> }
pigment { Red filter .5 }

}

We render the file again. This looks pretty good... only... we can see parts of each of the lens objects inside
the union! This is not good.

2.3.5 CSG Merge

This brings us to the fourth kind of CSG object, theqe. Merges are the same as unions, but the geometry
of the objects in the CSG that is inside the merge is not traced. This should eliminate the problem with our
object. Let’s try it.

merge {
object { Lens_With_Hole translate <-.65, .65, 0> }
object { Lens_With_Hole translate <.65, .65, 0> }
object { Lens_With_Hole translate <-.65, -.65, 0> }
object { Lens_With_Hole translate <.65, -.65, 0> }
pigment { Red filter .5 }

}

Sure enough, it does!



26 Getting Started

2.3.6 CSG Pitfalls

There is a severe pitfall in the CSG code that we have to be aware of.

Co-incident Surfaces

POV-Ray uses inside/outside tests to determine the points at which a ray intersects a CSG object. A problem
arises when the surfaces of two different shapes coincide because there is ho way (due to the computer’s
floating-point accuracy) to tell whether a point on the coincident surface belongs to one shape or the other.

Look at the following example where a cylinder is used to cut a hole in a larger box.

difference {
box { -1, 1 pigment { Red } }
cylinder { -z, z, 0.5 pigment { Green } }

}
Note: that the vectors -1 and 1 in the box definition expane tt,-1,-1> and<1,1,1> respectively.

If we trace this object we see red speckles where the hole is supposed to be. This is caused by the coincident
surfaces of the cylinder and the box. One time the cylinder’s surface is hit first by a viewing ray, resulting

in the correct rendering of the hole, and another time the box is hit first, leading to a wrong result where the
hole vanishes and red speckles appear. This problem can be avoided by increasing the size of the cylinder
to get rid of the coincidence surfaces. This is done by:

difference {

box { -1, 1 pigment { Red } }

cylinder { -1.001*z, 1.001*z, 0.5 pigment { Green } }
}

In general we have to make the subtracted object a little bit larger in a CSG difference. We just have to look
for coincident surfaces and increase the subtracted object appropriately to get rid of those surfaces.

The same problem occurs in CSG intersections and is also avoided by scaling some of the involved objects.

2.4 The Light Source

You know you have been raytracing too long when ...
... You take a photo course just to learn how to get the lighting right.
— Christoph Rieder

In any ray-traced scene, the light needed to illuminate our objects and their surfaces must come from a light
source. There are many kinds of light sources available in POV-Ray and careful use of the correct kind can
yield very impressive results. Let's take a moment to explore some of the different kinds of light sources
and their various parameters.

2.4.1 The Pointlight Source

Pointlights are exactly what the name indicates. A pointlight has no size, is invisible and illuminates
everything in the scene equally no matter how far away from the light source it may be (this behavior
can be changed). This is the simplest and most basic light source. There are only two important parameters,
location and color. Let's design a simple scene and place a pointlight source in it.

We create a new file and name ittedemo.pov. We edit it as follows:
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#include "colors.inc"
#include "textures.inc"
camera {
location <-4, 3, -9
look_at <0, 0, 0>
angle 48
}

We add the following simple objects:

plane {
y, -1
texture {
pigment {
checker
color rgb<0.5, 0, 0>
color rgb<0, 0.5, 0.5>
}
finish {
diffuse 0.4
ambient 0.2
phong 1
phong_size 100
reflection 0.25

}

torus {
1.5, 0.5
texture { Brown_Agate }
rotate <90, 160, 0>
translate <-1, 1, 3>

}

box {
<-1, -1, -1>, <1, 1, 1>
texture { DMFLightOak }
translate <2, 0, 2.3>

}

cone {
<0,1,0>, 0, <0,0,0>, 1
texture { PinkAlabaster }
scale <1, 3, 1>
translate <-2, -1, -1>

}

sphere {
<0,0,0>,1
texture { Sapphire_Agate }
translate <1.5, 0, -2>

}
Now we add a pointlight:

light_source {
<2, 10, -3>
color White
}

We render this at 200x15@. and see that the objects are clearly visible with sharp shadows. The sides of
curved objects nearest the light source are brightest in color with the areas that are facing away from the



28 Getting Started

light source being darkest. We also note that the checkered plane is illuminated evenly all the way to the
horizon. This allows us to see the plane, but it is not very realistic.

2.4.2 The Spotlight Source

Spotlights are a very useful type of light source. They can be used to add highlights and illuminate features
much as a photographer uses spots to do the same thing. To create a spotlight simplysaélel thet
keyword to a regular point light. There are a few more parameters with spotlights than with pointlights.
These areadius, falloff, tightness andpoint_at. Theradius parameter is the angle of the fully illumi-

nated cone. Thealloff parameter is the angle of tinbracone where the light falls off to darkness. The
tightness is a parameter that determines the rate of the light falloff. dhet_at parameter is just what it

says, the location where the spotlight is pointing to. Let’s change the light in our scene as follows:

light_source {
<0, 10, -3>
color White
spotlight
radius 15
falloff 20
tightness 10
point_at <0, 0, 0>
}

We render this at 200x15. and see that only the objects are illuminated. The rest of the plane and the
outer portions of the objects are now unlit. There is a broad falloff area but the shadows are still razor sharp.
Let's try fiddling with some of these parameters to see what they do. We change the falloff value to 16 (it
must always be larger than the radius value) and render again. Now the falloff is very narrow and the objects
are either brightly lit or in total darkness. Now we change falloff back to 20 and change the tightness value
to 100 (higher is tighter) and render again. The spotlight appears to have gotten much smaller but what has
really happened is that the falloff has become so steep that the radius actually appears smaller.

We decide that a tightness value of 10 (the default) and a falloff value of 18 are best for this spotlight and
we now want to put a few spots around the scene for effect. Let’s place a slightly narrower blue and a red
one in addition to the white one we already have:

light_source {
<10, 10, -1>
color Red
spotlight
radius 12
falloff 14
tightness 10
point_at <2, 0, 0>
}
light_source {
<-12, 10, -1>
color Blue
spotlight
radius 12
falloff 14
tightness 10
point_at <-2, 0, 0>
}

Rendering this we see that the scene now has a wonderfully mysterious air to it. The three spotlights all
converge on the objects making them blue on one side and red on the other with enough white in the middle
to provide a balance.
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2.4.3 The Cylindrical Light Source

Spotlights are cone shaped, meaning that their effect will change with distance. The farther away from the
spotlight an object is, the larger the apparent radius will be. But we may want the radius and falloff to be a
particular size no matter how far away the spotlight is. For this reason, cylindrical light sources are needed.
A cylindrical light source is just like a spotlight, except that the radius and falloff regions are the same no
matter how far from the light source our object is. The shape is therefore a cylinder rather than a cone. We
can specify a cylindrical light source by replacing #et1ight keyword with thecylinder keyword. We

try this now with our scene by replacing all three spotlights with cylinder lights and rendering again. We
see that the scene is much dimmer. This is because the cylindrical constraints do not let the light spread out
like in a spotlight. Larger radius and falloff values are needed to do the job. We try a radius of 20 and a
falloff of 30 for all three lights. That’s the ticket!

2.4.4 The Area Light Source

You know you have been raytracing too long when ...
... You wear fuzzy clothing to soften your shadow.
— Mark Kadela

So far all of our light sources have one thing in common. They produce sharp shadows. This is because the
actual light source is a point that is infinitely small. Objects are either in direct sight of the light, in which
case they are fully illuminated, or they are not, in which case they are fully shaded. In real life, this kind
of stark light and shadow situation exists only in outer space where the direct light of the sun pierces the
total blackness of space. But here on Earth, light bends around objects, bounces off objects, and usually
the source has some dimension, meaning that it can be partially hidden from sight (shadows are not sharp
anymore). They have what is known astanbra or an area of fuzziness where there is neither total light or
shade. In order to simulate theseftshadows, a ray-tracer must give its light sources dimension. POV-Ray
accomplishes this with a feature known as an area light.

Area lights have dimension in two axis’. These are specified by the first two vectors in the area light syntax.
We must also specify how many lights are to be in the array. More will give us cleaner soft shadows but
will take longer to render. Usually a 3*3 or a 5*5 array will suffice. We also have the option of specifying
an adaptive value. Theadaptive keyword tells the ray-tracer that it can adapt to the situation and send
only the needed rays to determine the value of the pixel. If adaptive is not used, a separate ray will be
sent for every light in the area light. This can really slow things down. The higher the adaptive value the
cleaner the umbra will be but the longer the trace will take. Usually an adaptive value of 1 is sufficient.
Finally, we probably should use theitter keyword. This tells the ray-tracer to slightly move the position

of each light in the area light so that the shadows appear truly soft instead of giving us an umbra consisting
of closely banded shadows.

OK, let’s try one. We comment out the cylinder lights and add the following:

light_source {
<2, 10, -3>
color White
area_light <5, 0, 0>, <0, 0, 5>, 5, 5
adaptive 1
jitter
}
This is a white area light centered<a®,10,-3>. It is 5 units (along the x-axis) by 5 units (along the z-axis)
in size and has 25 (5*5) lights in it. We have specified adaptive 1 and jitter. We render this at 208x150

Right away we notice two things. The trace takes quite a bit longer than it did with a point or a spotlight
and the shadows are no longer sharp! They all have nice soft umbrae around them. Wait, it gets better.
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Spotlights and cylinder lights can be area lights too! Remember those sharp shadows from the spotlights in
our scene? It would not make much sense to use a 5*5 array for a spotlight, but a smaller array might do a
good job of giving us just the right amount of umbra for a spotlight. Let’s try it. We comment out the area
light and change the cylinder lights so that they read as follows:

light_source {
<2, 10, -3>
color White
spotlight
radius 15
falloff 18
tightness 10
area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1
jitter
point_at <0, 0, 0>
}
light_source {
<10, 10, -1>
color Red
spotlight
radius 12
falloff 14
tightness 10
area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1
jitter
point_at <2, 0, 0>
}
light_source {
<-12, 10, -1>
color Blue
spotlight
radius 12
falloff 14
tightness 10
area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1
jitter
point_at <-2, 0, 0>
}

We now have three area-spotlights, one unit square consisting of an array of four (2*2) lights, three different
colors, all shining on our scene. We render this at 200x250 appears to work perfectly. All our shadows
have small, tight umbrae, just the sort we would expect to find on an object under a real spotlight.

2.4.5 The Ambient Light Source

The ambient light sourcés used to simulate the effect of inter-diffuse reflection. If there was not inter-
diffuse reflection all areas not directly lit by a light source would be completely dark. POV-Ray uses the
ambient keyword to determine how much light coming from the ambient light source is reflected by a
surface.

By default the ambient light source, which emits its light everywhere and in all directions, is pure white
(rgb <1,1,1>). Changing its color can be used to create interesting effects. First of all the overall light
level of the scene can be adjusted easily. Instead of changing all ambient values in every finish only the
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ambient light source is modified. By assigning different colors we can create nice effects like a moody
reddish ambient lighting. For more details about the ambient light source see “Ambient Light”.

Below is an example of a red ambient light source.

global_settings { ambient_light rgb<l, 0, 0> }

2.4.6 Light Source Specials
Using Shadowless Lights

Light sources can be assigned thedowless keyword and no shadows will be cast due to its presence in a
scene. Sometimes, scenes are difficult to illuminate properly using the lights we have chosen to illuminate
our objects. It is impractical and unrealistic to apply a higher ambient value to the texture of every object in
the scene. So instead, we would place a coupfél ifjhts around the scene. Fill lights are simply dimmer
lights with theshadowless keyword that act to boost the illumination of other areas of the scene that may
not be lit well. Let’s try using one in our scene.

Remember the three colored area spotlights? We go back and un-comment them and comment out any other
lights we have made. Now we add the following:

light_source {
<0, 20, 0>
color Gray50
shadowless

}

This is a fairly dim light 20 units over the center of the scene. It will give a dim illumination to all objects
including the plane in the background. We render it and see.

Assigning an Object to a Light Source

Light sources are invisible. They are just a location where the light appears to be coming from. They have
no true size or shape. If we want our light source to be a visible shape, we can usetheike keyword.

We can specify that our light source can look like any object we choose. When weolse i ke, thenno_-

shadow is applied to the object automatically. This is done so that the object will not block any illumination
from the light source. If we want some blocking to occur (as in a lamp shade), it is better to simply use a
union to do the same thing. Let’s add such an object to our scene. Here is a light bulb we have made just
for this purpose:

#declare Lightbulb = union {
merge {
sphere { <0,0,0>,1 }
cylinder {
<0,0,1>, <0,0,0>, 1
scale <0.35, 0.35, 1.0>
translate 0.5*%z
}
texture {
pigment {color rgb <1, 1, 1>}
finish {ambient .8 diffuse .6}
}
}
cylinder {
<0,0,1>, <0,0,0>, 1
scale <0.4, 0.4, 0.5>
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texture { Brass_Texture }
translate 1.5*%z

}

rotate -90*x

scale .5

}
Now we add the light source:

light_source {

<0, 2, 0>

color White

looks_like { Lightbulb }
}

Rendering this we see that a fairly believable light bulb now illuminates the scene. However, if we do not
specify a high ambient value, the light bulb is not lit by the light source. On the plus side, all of the shadows
fall away from the light bulb, just as they would in a real situation. The shadows are sharp, so let's make
our bulb an area light:

light_source {
<0, 2, 0>
color White
area_light <1, 0, 0>, <0, 1, 0>, 2, 2
adaptive 1
jitter
looks_like { Lightbulb }
}

We note that we have placed this area light in the x-y-plane instead of the x-z-plane. We also note that
the actual appearance of the light bulb is not affected in any way by the light source. The bulb must be
illuminated by some other light source or by, as in this case, a high ambient value.

Using Light Fading

If it is realism we want, it is not realistic for the plane to be evenly illuminated off into the distance. In real
life, light gets scattered as it travels so it diminishes its ability to illuminate objects the farther it gets from
its source. To simulate this, POV-Ray allows us to use two keywards: distance, which specifies the
distance at which full illumination is achieved, andie power, an exponential value which determines the
actual rate of attenuation. Let's apply these keywords to our fill light.

First, we make the fill light a little brighter by changingray50 to Gray75. Now we change that fill light as
follows:

light_source {
<0, 20, 0>
color Gray75
fade_distance 5
fade_power 1
shadowless

}

This means that the full value of the fill light will be achieved at a distance of 5 units away from the light
source. The fade power of 1 means that the falloff will be linear (the light falls off at a constant rate). We
render this to see the result.

That definitely worked! Now let’s try a fade power of 2 and a fade distance of 10. Again, this works well.
The falloff is much faster with a fade power of 2 so we had to raise the fade distance to 10.



2.5 Simple Texture Options 33

2.5 Simple Texture Options

The pictures rendered so far where somewhat boring regarding the appearance of the objects. Let's add
some fancy features to the texture.

2.5.1 Surface Finishes

One of the main features of a ray-tracer is its ability to do interesting things with surface finishes such as
highlights and reflection. Let’s add a nice little Phong highlight (shiny spot) to a sphere. To do this we need
to add afinish keyword followed by a parameter. We change the definition of the sphere to this:

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow } //Yellow is pre-defined in COLORS.INC
finish { phong 1 }
}
}

We render the scene. Theong keyword adds a highlight the same color of the light shining on the object.
It adds a lot of credibility to the picture and makes the object look smooth and shiny. Lower values of phong
will make the highlight less bright (values should be between 0 and 1).

2.5.2 Adding Bumpiness

The highlight we have added illustrates how much of our perception depends on the reflective properties of
an object. Ray-tracing can exploit this by playing tricks on our perception to make us see complex details
that are not really there.

Suppose we wanted a very bumpy surface on the object. It would be very difficult to mathematically model
lots of bumps. We can however simulate the way bumps look by altering the way light reflects off of the
surface. Reflection calculations depend on a vector caldface normal This is a vector which points
away from the surface and is perpendicular to it. By artificially modifying (or perturbing) this normal vector
we can simulate bumps. We change the scene to read as follows and render it:

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
normal { bumps 0.4 scale 0.2 }
finish { phong 1 }
}
}

This tells POV-Ray to use theunps pattern to modify the surface normal. The value 0.4 controls the
apparent depth of the bumps. Usually the bumps are about 1 unit wide which does not work very well with
a sphere of radius 2. The scale makes the bumps 1/5th as wide but does not affect their depth.

2.5.3 Creating Color Patterns

We can do more than assigning a solid color to an object. We can create complex patterns in the pigment
block like in these examples:
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sphere {
<0, 1, 2>, 2
texture {
pigment {
wood
color_map {
[0.0 color DarkTan]
[0.9 color DarkBrown]
[1.0 color VeryDarkBrown]
}
turbulence 0.05
scale <0.2, 0.3, 1>
}
finish { phong 1 }
}
}

sphere {
<0, 1, 2>, 2
texture {
pigment {
wood
color_map {
[0.0 color Red]
[0.5 color Red]
[0.5 color Blue]
[1.0 color Blue]

}
scale <0.2, 0.3, 1>
}
finish { phong 1 }
}
}

The keywordvood specifies a pigment pattern of concentric rings like rings in wood. For every position in
POV-space, a pattern returns a float value in the range from zero to one. Values outside the zero to one range
are ignored. Theolor map Specifies what color vector is assigned to that float value. In the first example

the color of the wood blends fron:rkTan to DarkBrown over the first 90% of the vein and frobarkBrown

to veryDarkBrown over the remaining 10%. In the second example the colors do not blend from one to an
other, but change abrupt. Therbulence keyword slightly stirs up the pattern so the veins are not perfect
circles and thecale keyword adjusts the size of the pattern.

Most patterns are set up by default to give us teatureacross a sphere of radius 1.0. A feature is very
roughly defined as a color transition. For example, a wood texture would have one band on a sphere of
radius 1.0. In this example we scale the pattern usingdhe: keyword followed by a vector. In this case

we scaled 0.2 in the x direction, 0.3 in the y direction and the z direction is scaled by 1, which leaves it
unchanged. Scale values larger than one will stretch an element. Scale values smaller than one will squish
an element. A scale value of one will leave an element unchanged.

2.5.4 Pre-defined Textures

POV-Ray has some very sophisticated textures pre-defined in the standard inclugie fdesnc, netals.
inc, stones.inc andwoods.inc. Some are entire textures with pigment, normal and/or finish parameters
already defined. Some are just pigments or just finishes.

We change the definition of our sphere to the following and then re-render it:
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sphere {
<0, 1, 2>, 2
texture {
pigment {
DMFWood4 // pre-defined in textures.inc
scale 4 // scale by the same amount in all

// directions
}
finish { Shiny } // pre-defined in finish.inc
}
}

The pigment identifiepvriiood4 has already been scaled down quite small when it was defined. For this
example we want to scale the pattern larger. Because we want to scale it uniformly we can put a single
value after the scale keyword rather than a vector of x, y, z scale factors.

We look through the fileextures. inc to see what pigments and finishes are defined and try them out. We
just insert the name of the new pigment wherewood4 is now or try a different finish in place afhiny
and re-render our file.

Here is an example of using a complete texture identifier rather than just the pieces.

sphere {

<0, 1, 2>, 2

texture { PinkAlabaster }
}

2.6 Using the Camera

2.6.1 Using Focal Blur

Let’s construct a simple scene to illustrate the use of focal blur. For this example we will use a pink sphere,
a green box and a blue cylinder with the sphere placed in the foreground, the box in the center and the
cylinder in the background. A checkered floor for perspective and a couple of light sources will complete
the scene. We create a new file calledcalden.pov and enter the following text

#include "colors.inc"
#include "shapes.inc"
#include "textures.inc"
sphere {
<1, 0, -6>, 0.5
finish {
ambient 0.1
diffuse 0.6
}
pigment { NeonPink }
}
box {
<=1, -1, -1>, <1, 1, 1>
rotate <0, -20, 0>
finish {
ambient 0.1
diffuse 0.6
}
pigment { Green }

}
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cylinder {
<-6, 6, 30>, <=6, -1, 30>, 3
finish {
ambient 0.1
diffuse 0.6
}
pigment {NeonBlue}
}
plane {
y, -1.0
pigment {
checker color Gray65 color Gray30
}
}
light_source { <5, 30, -30> color White }
light_source { <=5, 30, -30> color White }

Now we can proceed to place our focal blur camera to an appropriate viewing position. Straight back from
our three objects will yield a nice view. Adjusting the focal point will move the point of focus anywhere in
the scene. We just add the following lines to the file:

camera {
location <0.0, 1.0, -10.0>
look_at <0.0, 1.0, 0.0>
// focal_point <-6, 1, 30> // blue cylinder in focus

// focal_point < 0, 1, 0> // green box in focus
focal_point < 1, 1, -6> // pink sphere in focus
aperture 0.4 // a nice compromise

// aperture 0.05 // almost everything is in focus

// aperture 1.5 // much blurring

// blur_samples 4 // fewer samples, faster to render
blur_samples 20 // more samples, higher quality image

}

The focal point is simply the point at which the focus of the camera is at its sharpest. We position this point
in our scene and assign a value to the aperture to adjust how close or how far away we want the focal blur
to occur from the focused area.

The aperture setting can be consideredega of focus Opening up the aperture has the effect of making
the area of focus smaller while giving the aperture a smaller value makes the area of focus larger. This is
how we control where focal blur begins to occur around the focal point.

The blur samples setting determines how many rays are used to sample each pixel. Basically, the more rays
that are used the higher the quality of the resultant image, but consequently the longer it takes to render.
Each scene is different so we have to experiment. This tutorial has examples of 4 and 20 samples but we
can use more for high resolution images. We should not use more samples than is necessary to achieve the
desired quality - more samples take more time to render. The confidence and variance settings are covered
in section “Focal Blur”.

We experiment with the focal point, aperture, and blur sample settings. The scene has lines with other
values that we can try by commenting out the default line with double slash marks and un-commenting the
line we wish to try out. We make only one change at a time to see the effect on the scene.

Two final points when tracing a scene using a focal blur camera. We need not specify anti-aliasing because
the focal blur code uses its own sampling method that automatically takes care of anti-aliasing. Focal blur
can only be used with the perspective camera.
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2.7 POV-Ray Coordinate System

Objects, lights and the camera are positioned using a typical 3D coordinate system. The usual coordinate
system for POV-Ray has the positive y-axis pointing up, the positive x-axis pointing to the right and the
positive z-axis pointing into the screen. The negative values of the axes point the other direction as shown
in the images in section “Understanding POV-Ray’s Coordinate System”.

Locations within that coordinate system are usually specified by a three component vector. The three values
correspond to the x, y and z directions respectively. For example, the vectors> means the point that
is one unit to the right, two units up and three units in front of the center of the univetse @to>.

Vectors are not always points though. They can also refer to an amount to size, move or rotate a scene
element or to modify the texture pattern applied to an object.

The size, location, orientation, and deformation of items within the coordinate system is controlled by
modifiers calledransformations The follow sub-sections describe the transformations and their usage.

2.7.1 Transformations

The supported transformations ar2ate, scale, andtranslate. They are used to turn, size and move an
object or texture. A transformation matrix may also be used to specify complex transformations directly.
Groups of transformations may be merged together and stored in a transformation identifier. The syntax for
transformations is as follows.

TRANSFORMATION:
rotate <Rotate_Amt> | scale <Scale_Amt> |
translate <Translate_Amt> | transform TRANSFORM_IDENTIFIER |
transform { TRANSFORMATION_BLOCK...} |
matrix <val00, Vval0Ol, VvalO2,
VallO, Vvalll, vall2,
vVal20, val2l, Vval22,
Val30, Vval3l, Vval32>
TRANSFORMATION_BLOCK:
TRANSFORM_IDENTIFIER | TRANSFORMATION | inverse
TRANSFORM_DECLARATION:
#declare IDENTIFIER = transform { TRANSFORMATION_BLOCK...} |
#local IDENTIFIER = transform { TRANSFORMATION_BLOCK...}

Translate

Items may be moved by adding-aans1ate modifier. It consists of the keywordranslate followed by a
vector expression. The three terms of the vector specify the number of units to move in each of the x, y and
z directions. Translate moves the element relative to its current position. For example

sphere { <10, 10, 10>, 1
pigment { Green }
translate <=5, 2, 1>

}

will move the sphere from the locationi0,10,10> to <5,12,11>. It does not move it to the absolute
location<-5, 2, 1>. Translations are always relative to the item’s location before the move. Translating by
zero will leave the element unchanged on that axis. For example:

sphere { <10, 10, 10>, 1
pigment { Green }
translate 3*x // evaluates to <3,0,0> so move 3 units
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// in the x direction and none along y or z

Scale

You may change the size of an object or texture pattern by addingzae modifier. It consists of the
keywordscale followed by a vector expression. The three terms of the vector specify the amount of scaling
in each of the x, y and z directions.

Uneven scaling is used tetretchor squishan element. Values larger than one stretch the element on that
axis while values smaller than one are used to squish it. Scale is relative to the current element size. If the
element has been previously re-sized using scale then scale will size relative to the new size. Multiple scale
values may used.

For example

sphere { <0,0,0>, 1
scale <2,1,0.5>

}

will stretch and smash the sphere into an ellipsoid shape that is twice the original size along the x-direction,
remains the same size in the y-direction and is half the original size in the z-direction.

If a lone float expression is specified it is promoted to a three component vector whose terms are all the
same. Thus the item is uniformly scaled by the same amount in all directions. For example:

object {
MyObject
scale 5 // Evaluates as <5,5,5> so uniformly scale
// by 5 in every direction.

}

When one of the scaling components is zero, POV-Ray changes this component to 1 since it assumes that 0
means no scaling in this direction. A warning “lllegal Value: Scale X, Y or Z by 0.0. Changed to 1.0.” is
printed then.

Rotate

You may change the orientation of an object or texture pattern by addingzae modifier. It consists of
the keyword rotate followed by a vector expression. The three terms of the vector specify the number of
degrees to rotate about each of the x-, y- and z-axes.

Note: that the order of the rotations does matter. Rotations occur about the x-axis first, then the y-axis, then
the z-axis. If you are not sure if this is what you want then you should only rotate on one axis at a time
using multiple rotation statements to get a correct rotation.

rotate <0, 30, 0> // 30 degrees around Y axis then,
rotate <-20, 0, 0> // -20 degrees around X axis then,
rotate <0, 0, 10> // 10 degrees around Z axis.

Rotation is always performed relative to the axis. Thus if an object is some distance from the axis of rotation
it will not only rotate but it will orbit about the axis as though it was swinging around on an invisible string.

POV-Ray uses a left-handed rotation system. Using the fam@amputer Graphics Aerobit&xercise,

you hold up your left hand and point your thumb in the positive direction of the axis of rotation. Your fingers
will curl in the positive direction of rotation. Similarly if you point your thumb in the negative direction
of the axis your fingers will curl in the negative direction of rotation. See “Understanding POV-Ray’s
Coordinate System” for an illustration.
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Matrix

Thenatrix keyword can be used to explicitly specify the transformation matrix to be used for objects or
textures. Its syntax is:

MATRIX:
matrix <val00, VvalOl, VvalO2,
VallO, valll, vall2,
Val20, Vval2l, Vval22,
Val30, Vval3l, Vval32>

WhereVvalo0o throughval32 are float expressions enclosed in angle brackets and separated by commas.
Note: this is not a vector. It is a set of 12 float expressions.

These floats specify the elements of a 4 by 4 matrix with the fourth column implicitly settg o, 1>. At
any given poinP, P=<px, py, pz, is transformed into the poil®, Q=<gx, qy, qz- by

gx = Valo0 * px + Val10 * py + Val20 * pz + Val30
qy = Val0ol * px + Valll * py + Val21 * pz + Val31
gz = Val02 * px + Vall2 * py + Val22 * pz + Val32

Normally you will not use the matrix keyword because it is less descriptive than the transformation com-
mands and harder to visualize. However the matrix command allows more general transformation effects
like shearing The following matrix causes an object to be sheared along the y-axis.

object {

MyObject

matrix < 1, 1, O,
0, 1,

2.7.2 Transformation Order

Because rotations are always relative to the axis and scaling is relative to the origin, you will generally
want to create an object at the origin and scale and rotate it first. Then you may translate it into its proper
position. It is a common mistake to carefully position an object and then to decide to rotate it. However
because a rotation of an object causes it to orbit about the axis, the position of the object may change so
much that it orbits out of the field of view of the camera!

Similarly scaling after translation also moves an object unexpectedly. If you scale after you translate the
scale will multiply the translate amount.
For example

translate <5, 6, 7>
scale 4

will translate to<20, 24, 28> instead of <5, 6, 7>. Be careful when transforming to get the order correct
for your purposes.

2.7.3 Inverse Transform

transform { scale <20,24,28> translate y*3 inverse }
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An inverse transform does the opposite of what the transform would normally do, and can be used to
“undo” transforms without messing around with huge numbers of transformations. To do the same without
this inverse, you would have to duplicate each transform, change them to do the opposite of what they
would normally do (for exampleranslate -y*3 instead oftranslate y*3)and reverse their order.

2.7.4 Transform ldentifiers

At times it is useful to combine together several transformations and apply them in multiple places. A
transform identifier may be used for this purpose. Transform identifiers are declared as follows:

TRANSFORM_DECLARATION:
#declare IDENTIFIER = transform{ TRANSFORMATION... } |
#local IDENTIFIER = transform{ TRANSFORMATION... }

WherelDENTIFIERIs the name of the identifier up to 40 characters long BRANSFORMATIONs any
valid transformation modifier. See “#declare vs. #local” for information on identifier scope. Here is an
example...

#declare MyTrans =

transform {
rotate THISWAY
scale SOMUCH
rotate -THISWAY
scale BIGGER
translate OVERTHERE
rotate WAYAROUND

}

A transform identifier is invoked by theransform keyword with or without brackets as shown here:

object {
MyObject // Get a copy of MyObject
transform MyTrans // Rpply the transformation
translate -x*5 // Then move it 5 units left

}

object {
MyObject // Get another copy of MyObject
transform { MyTrans } // Apply the same transformation
translate x*5 // Then move this one 5 units right

}

On extremely complex CSG objects with lots of components it may speed up parsing if you apply a declared
transformation rather than the individualanslate, rotate, scale, Or matrix modifiers. Thecransform

is attached just once to each component. Applying each individuaklate, rotate, scale, Or matrix
modifiers takes longer. This only affects parsing - rendering works the same either way.

2.7.5 Transforming Textures and Objects

When an object is transformed all textures attached to the oljéleat timeare transformed as well. This
means that if you have aranslate, rotate, scale, OF matrix modifier in an objecbeforea texture,
then the texture will not be transformed. If the transformatioafier the texture then the texture will be
transformed with the object. If the transformatiorinsidethe texture statement theonly the texturas
affected. The shape remains the same. For example:

sphere { 0, 1
texture { Jade } // texture identifier from TEXTURES.INC
scale 3 // this scale affects both the
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// shape and texture
}
sphere { 0, 1
scale 3 // this scale affects the shape only
texture { Jade }
}
sphere { 0, 1
texture {
Jade
scale 3 // this scale affects the texture only
}
}

Transformations may also be independently applied to pigment patterns and surface normal patterns.

Note: scaling a normal pattern not only affects the width and spacing. It does also affect the apparent height
or depth of the bumps, for how to avoid this see Scaling hormals.

For example:

box { <0, 0, 0>, <1, 1, 1>

texture {

pigment {
checker Red, White
scale 0.25 // This affects only the color pattern
}

normal {
bumps 0.3
scale 0.2

// This specifies apparent height of bumps
// Scales diameter and space between bumps
// and also the height. Has no effect on
// color pattern.

}

rotate y*45 // This affects the entire texture but

} // not the object.
}

2.8 Setting POV-Ray Options

POV-Ray was originally created as a command-line program for operating systems without graphical inter-
faces, dialog boxes and pull-down menus. Most versions of POV-Ray still use command-line switches to
tell it what to do. This documentation assumes you are using the command-line version. If you are using
Macintosh, MS-Windows or other GUI versions, there will be dialog boxes or menus which do the same
thing. There is system-specific documentation for each system describing the specific commands.

There are two distinct ways of setting POV-Ray options (other than through the GUI interface, if applicable)
: command line switches and INI file keywords. Both are explained in detail in the following sections.

2.8.1 Command Line Switches

Command line switches consist of+a(plus) or - (minus) sign, followed by one or more alphabetic
characters and possibly a numeric value. Here is a typical command line with switches.

POVRAY +Isimple.pov +V +W80 +H60

povray iS the name of the program and it is followed by several switches. Each switch begins with a plus
or minus sign. The+1 switch with the filename tells POV-Ray what scene file it should use as input and
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+v tells the program to output its status to the text screen as it is working+waed +r switches set the
width and height of the image in pixels. This image will be 80 pixels wide by 60 pixels high.

In switches which toggle a feature, the plus turns it on and minus turns it off. For exampléns on the
pause for keypress when finishaggotion while-p turns it off. Other switches are used to specify values and
do not toggle a feature. Either plus or minus may be used in that instance. For examplsets the width

to 320 pixels. You could also usew320 and get the same results.

Switches may be specified in upper or lower case. They are read left to right but in general may be specified
in any order. If you specify a switch more than once, the previous value is generally overwritten with the
last specification. The only exception is thieswitch for setting library paths. Up to ten unique paths may

be specified.

Almost all + or - switches have an equivalent option which can be used in an INI file which is described
in the next section. A detailed description of each switch is given in the option reference section.

2.8.2 Using INI Files

Note: although the term 'INI file’ is used by POV-Ray, this was implemented before the widespread
acceptance of Microsoft Windows, and while POV-Ray’s INI files are almost identical to those of Windows,
there are some minor differences (the foremost being that it is legal to have multiple instances of the same
item in a section). INI files are used on all platform versions of POV-Ray, not just on the Windows platform.

Because it is difficult to set more than a few options on a command line, you have the ability to put multiple
options in one or more text files. These initialization files or INI files have .ini as their default extension.
Previous versions of POV-Ray called them default files or DEF files. You may still use existing DEF files
with this version of POV-Ray.

The majority of options you use will be stored in INI files. The command line switches are recommended
for options which you will turn off or on frequently as you perform test renderings of a scene you are
developing. The filepovray.ini is automatically read if present. You may specify additional INI files on
the command-line by simply typing the file name on the command line. For example:

POVRAY MYOPTS.INI

If no extension is given, thenni is assumed. POV-Ray knows this is not a switch because it is not preceded
by a plus or minus.

You may have multiple INI files on the command line along with switches. For example:
POVRAY MYOPTS +V OTHER
This reads options fromyopts. ini, then sets the+v switch, then reads options frosher. ini.
An INI file is a plain ASCII text file with options of the form...
Option_keyword=VALUE ; Text after semicolon is a comment
For example the INI equivalent of the switehsimple.pov isS...
Input_File_Name=simple.pov

Options are read top to bottom in the file but in general may be specified in any order. If you specify an
option more than once, the previous values are generally overwritten with the last specification. The only
exception is theibrary Path=path options. Up to 25 unique paths may be specified.

Almost all INI-style options have equivalenbr - switches. The option reference section gives a detailed
description of all POV-Ray options. It includes both the INI-style settings and/thawvitches.

The INI keywords are not case sensitive. Only one INI option is permitted per line of text. You may also
include switches in your INI file if they are easier for you. You may have multiple switches per line but you
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should not mix switches and INI options on the same line. You may nest INI files by simply putting the file
name on a line by itself with no equals sign after it. Nesting may occur up to ten levels deep. For example:

; This is a sample INI file. This entire line is a comment.
; Blank lines are permitted.

Input_File_Name=simple.pov ;This sets the input file name
+W80 +H60 ; Traditional +/- switches are permitted too
MOREOPT ; Read MOREOPT.INI and continue with next line
+V ; Another switch

; That’s all folks!

INI files may have labeled sections so that more than one set of options may be stored in a single file. Each
section begins with a label in [] brackets. For example:

; RES.INI
; This sample INI file is used to set resolution.
+W120 +H100 ; This section has no label.

; Select it with "RES"

[Low]

+W80 +H60 ; This section has a label.
; Select it with "RES[Low]"

[Med]

+W320 +H200 ; This section has a label.
; Select it with "RES[Med]"
[High]
+W640 +H480 ; Labels are not case sensitive.
; "RES[high]" works
[Really High]
+W800 +H600 ; Labels may contain blanks

When you specify the INI file you should follow it with the section label in brackets. For example...
POVRAY RES[Med] +Imyfile.pov

POV-Ray readses.ini and skips all options until it finds the laheld. It processes options after that label
until it finds another label and then it skips. If no label is specified on the command line then only the
unlabeled area at the top of the file is read. If a label is specified, the unlabeled area is ignored.

If a file or path contains blanks the whole file and path specification has to be put in quotes. You may either
use a double-quote oir a single-quote, but you have to use the same at the beginning and end. For example:

+I'my file.pov"
+I'my file.pov’
Input_File="my file.pov"
Input_File='my file.pov’

By using either single or double quotes it is possible to specify files whose name or path contains either as
part of the name. For example:

+I"file’s.pov"

+I'my "big" file.pov’
Input_File="file’s.pov"
Input_File='my "big" file.pov’

2.8.3 Using the POVINI Environment Variable

The environment variable POVINI is used to specify the location and name of a default INI file that is
read every time POV-Ray is executed. If POVINI is not specified, or if your computer platform does not
use environment variables, a default INI file may be read. If the specified file does not exist, a warning
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message is printed. To set the environment variable under MS-DOS you might put the following line in
your autoexec.bat file...

set POVINI=c:\povray3\default.ini
On most operating systems the sequence of reading options is as follows:

1. Read options from default INI file specified by the POVINI environment variable or platform specific
INI file.

2. Read switches from command line (this includes reading any specified INI/DEF files).

The POVRAYOPT environment variable supported by previous POV-Ray versions is no longer available.



Chapter 3

Advanced Features

3.1 Spline Based Shapes

After we have gained some experience with the simpler shapes available in POV-Ray it is time to go on to
the more advanced, thrilling shapes.

We should be aware that the shapes described in this and the following two chapters are not trivial to
understand. We need not be worried though if we do not know how to use them or how they work. We just
try the examples and play with the features described in the reference chapter. There is nothing better than
learning by doing.

You may wish to skip to the chapter “Simple Texture Options” before proceeding with these advanced
shapes.

3.1.1 Lathe Object

In the real world,1athe refers to a process of making patterned rounded shapes by spinning the source
material in place and carving pieces out as it turns. The results can be elaborate, smoothly rounded, elegant
looking artefacts such as table legs, pottery, etc. In POV-Ray, a lathe object is used for creating much the
same kind of items, although we are referring to the object itself rather than the means of production.

Here is some source for a really basic lathe.

#include "colors.inc"
background{White}
camera {
angle 10
location <1, 9, -50>
look_at <0, 2, 0>
}
light_source {
<20, 20, -20> color White
}
lathe {
linear_spline
6’
<0,0>, <1,1>, <3,2>, <2,3>, <2,4>, <0,4>
pigment { Blue }
finish {
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ambient .3
phong .75
}
}

Figure 3.1: A simple lathe object.

We render this, and what we see is a fairly simply type of lathe, which looks like a child’s top. Let's take a
look at how this code produced the effect.

First, a set of six points is declared which the raytracer connects with lines. We note that there are only two
components in the vectors which describe these points. The lines that are drawn are assumed to be in the
x-y-plane, therefore it is as if all the z-components were assumed to be zero. The use of a two-dimensional
vector is mandatory (Attempting to use a 3D vector would trigger an error... with one exception, which we
will explore later in the discussion of splines).

Once the lines are determined, the ray-tracer rotates this line around the y-axis, and we can imagine a trail
being left through space as it goes, with the surface of that trail being the surface of our object.

The specified points are connected with straight lines because we useddhe spline keyword. There
are other types of splines available with the lathe, which will result in smooth curving lines, and even
rounded curving points of transition, but we will get back to that in a moment.

First, we would like to digress a moment to talk about the difference between a lathe and a surface of
revolution object (SOR). The SOR object, described in a separate tutorial, may seem terribly similar to the
lathe at first glance. It too declares a series of points and connects them with curving lines and then rotates
them around the y-axis. The lathe has certain advantages, such as different kinds of splines, linear, quadratic
and cubic, and one more thing:

The simpler mathematics used by a SOR does not allow the curve to double back over the same y-
coordinates, thus, if using a SOR, any sudden twist which cuts back down over the same heights that
the curve previously covered will trigger an error. For example, suppose we wanted a lathe to arc up from
<0,0> to <2,2>, then to dip back down te:4,0>. Rotated around the y-axis, this would produce some-
thing like a gelatin mold - a rounded semi torus, hollow in the middle. But with the SOR, as soon as the
curve doubled back on itself in the y-direction, it would become an illegal declaration.

Still, the SOR has one powerful strong point: because it uses simpler order mathematics, it generally tends
to render faster than an equivalent lathe. So in the end, it is a matter of: we use a SOR if its limitations will
allow, but when we need a more flexible shape, we go with the lathe instead.
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Understanding The Concept of Splines

It would be helpful, in order to understand splines, if we had a so8pihe Workshopvhere we could
practice manipulating types and points of splines and see what the effects were like. So let's make one!
Now that we know how to create a basic lathe, it will be easy:

#include "colors.inc"

camera {

orthographic

up <0, 5, 0>

right <5, 0, 0>

location <2.5, 2.5, -100>

look_at <2.5, 2.5, 0>
}
/* set the control points to be used */
#declare Red_Point = <1.00, 0.00>;
#declare Orange_Point <1.75, 1.00>;
#declare Yellow_Point = <2.50, 2.00>;
#declare Green_Point = <2.00, 3.00>;
#declare Blue_Point = <1.50, 4.00>;
/* make the control points visible */
cylinder { Red_Point, Red_Point - <0,0,20>, .1

pigment { Red }

finish { ambient 1 }

}
cylinder { Orange_Point, Orange_Point - <0,0,20>, .1
pigment { Orange }
finish { ambient 1 }
}
cylinder { Yellow_Point, Yellow_Point - <0,0,20>, .1
pigment { Yellow }
finish { ambient 1 }
}
cylinder { Green_Point, Green_Point - <0,0,20>, .1
pigment { Green }
finish { ambient 1 }
}
cylinder { Blue_Point, Blue_Point- <0,0,20>, .1
pigment { Blue }
finish { ambient 1 }
}
/* something to make the curve show up */
lathe {
linear_spline
5,
Red_Point,
Orange_Point,
Yellow_Point,
Green_Point,
Blue_Point
pigment { White }
finish { ambient 1 }

}

Now, we take a deep breath. We know that all looks a bit weird, but with some simple explanations, we can
easily see what all this does.

First, we are using the orthographic camera. If we have not read up on that yet, a quick summary is: it
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Figure 3.2: A simple

renders the scerftat, eliminating perspective distortion so that in a side view, the objects look like they
were drawn on a piece of graph paper (like in the side view of a modeler or CAD package). There are
several uses for this practical new type of camera, but here it is allowing us to see our lathe and cylinders
edge onso that what we see is almost like a cross section of the curve which makes the lathe, rather than the
lathe itself. To further that effect, we eliminated shadowing withatheent 1 finish, which of course also
eliminates the need for lighting. We have also positioned this particular side view soQjtat appears at

the lower left of our scene.

Next, we declared a set of points. We note that we used 3D vectors for these points rather than the 2D
vectors we expect in a lathe. That is the exception we mentioned earlier. When we declare a 3D point,
then use it in a lathe, the lathe only uses the first two components of the vector, and whatever is in the third
component is simply ignored. This is handy here, since it makes this example possible.

Next we do two things with the declared points. First we use them to place small diameter cylinders at
the locations of the points with the circular caps facing the camera. Then we re-use those same vectors to
determine the lathe.

Since trying to declare a 2D vector can have some odd results, and is not really what our cylinder decla-
rations need anyway, we can take advantage of the lathe’s tendency to ignore the third component by just
setting the z-coordinate in these 3D vectors to zero.

The end result is: when we render this code, we see a white lathe against a black background showing us
how the curve we have declared looks, and the circular ends of the cylinders show us where along the x-y-
plane our control points are. In this case, it is very simple. The linear spline has been used so our curve is
just straight lines zig-zagging between the points. We change the declaratiensrof nt andsilue_point

to read as follows.

#declare Red_Point = <2.00, 0.00>;
#declare Blue_Point = <0.00, 4.00>;

We re-render and, as we can see, all that happens is that the straight line segments just move to accommodate
the new position of the red and blue points. Linear splines are so simple, we could manipulate them in our
sleep, no?

Let’s try something different. First, we change the points to the following.

#declare Red_Point = <1.00, 0.00>;
#declare Orange_Point = <2.00, 1.00>;
#declare Yellow_Point = <3.50, 2.00>;
#declare Green_Point = <2.00, 3.00>;
#declare Blue_Point = <1.50, 4.00>;

We then go down to the lathe declaration and changear_spline t0 quadratic_spline. We re-render and
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Figure 3.3: Moving some points of the spline.

Figure 3.4: A quadratic spline lathe.

what do we have? Well, there is a couple of things worthy of note this time. First, we will see that instead

of straight lines we have smooth arcs connecting the points. These arcs are made from quadratic curves, so
our lathe looks much more interesting this time. Alsaj_point is no longer connected to the curve. What
happened?

Well, while any two points can determine a straight line, it takes three to determine a quadratic curve.
POV-Ray looks not only to the two points to be connected, but to the point immediately preceding them to
determine the formula of the quadratic curve that will be used to connect them. The problem comes in at
the beginning of the curve. Beyond the first point in the curve there igregiouspoint. So we need to
declare one. Therefore, when using a quadratic spline, we must remember that the first point we specify is
only there so that POV-Ray can determine what curve to connect the first two points with. It will not show
up as part of the actual curve.

There is just one more thing about this lathe example. Even though our curve is now put together with
smooth curving lines, the transitions between those lines is... well, kind of choppy, no? This curve looks
like the lines between each individual point have been terribly mismatched. Depending on what we are
trying to make, this could be acceptable, or, we might long for a more smoothly curving shape. Fortunately,
if the latter is true, we have another option.

The quadratic spline takes longer to render than a linear spline. The math is more complex. Taking longer
still is the cubic spline, yet for a really smoothed out shape this is the only way to go. We go back into our
example, and simply replaegadratic_spline With cubic_spline. We render one more time, and take a

look at what we have.

While a quadratic spline takes three points to determine the curve, a cubic needs four. So, as we might
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Figure 3.5: A cubic spline lathe.

expect,Blue_Point has now dropped out of the curve, justras_point did, as the first and last points of

our curve are now only control points for shaping the curves between the remaining points. But look at the
transition from orange_Point t0 Yellow Point and then back tocreen Point. Now, rather than looking
mismatched, our curve segments look like one smoothly joined curve.

finally there is another kind of quadratic spline, theier_spline. This one takes four points per section.
The start point, the end points and in between, two control points. To use it, we will have to make a few
changes to our work shop. Delete the Yellow point, delete the Yellow cylinder. Change the points to:

#declare Red_Point = <2.00, 1.00>;
#declare Orange_Point = <3.00, 1.50>;
#declare Green_Point = <3.00, 3.50>;
#declare Blue_Point = <2.00, 4.00>;

And change the lathe to:

lathe {
bezier_spline
4!
Red_Point,
Orange_Point,
Green_Point,
Blue_Point
pigment { White }
finish { ambient 1 }

}

The, green and orange, control points are not connected to the curve. Move them around a bit, for example
#declare Orange_Point = <1.00, 1.50>;. The line that can be drawn from the start point to its closest
control point (red to orange) shows the tangent of the curve at the start point. Same for the end point, blue
to green.

One spline segment is nice, two is nicer. So we will add another segment and connect it to the blue point.
One segment has four points, so two segments have eight. The first point of the second segment is the same
as the last point of the first segment. The blue point. So we only have to declare three more points. Also
we have to move the camera a bit and add more cylinders. Here is the complete scene again:

#include "colors.inc"
camera {
orthographic
up <0, 7, 0>
right <7, 0, 0>
location <3.5, 4, -100>
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Figure 3.6: a beziespline lathe

look_at <3.5, 4, 0>
}

/* set the control points to be used */

#declare Red_Point = <2.00, 1.00>;
#declare Orange_Point = <1.00, 1.50>;
#declare Green_Point = <3.00, 3.50>;
#declare Blue_Point = <2.00, 4.00>;
#declare Green_Point2 = <3.00, 4.50>;
#declare Orange_Point2= <1.00, 6.50>;

#declare Red_Point2 = <2.00, 7.00>;
/* make the control points visible */

cylinder { Red_Point, Red_Point - <0,0,20>, .1
pigment { Red } finish { ambient 1 }

}

cylinder { Orange_Point, Orange_Point - <0,0,20>, .1
pigment { Orange } finish { ambient 1 }

}

cylinder { Green_Point, Green_Point - <0,0,20>, .1
pigment { Green } finish { ambient 1 }

}

cylinder { Blue_Point, Blue_Point- <0,0,20>, .1
pigment { Blue } finish { ambient 1 }

}

cylinder { Green_Point2, Green_Point2 - <0,0,20>, .1
pigment { Green } finish { ambient 1 }

}

cylinder { Orange_Point2, Orange_Point2 - <0,0,20>, .1
pigment { Orange } finish { ambient 1 }

}

cylinder { Red_Point2, Red_Point2 - <0,0,20>, .1
pigment { Red } finish { ambient 1 }

}

/* something to make the curve show up */

lathe {
bezier_spline
8,
Red_Point, Orange_Point, Green_Point, Blue_Point
Blue_Point, Green_Point2, Orange_Point2, Red_Point2
pigment { White }
finish { ambient 1 }
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Figure 3.7: two beziespline segments, not smooth

A nice curve, but what if we want a smooth curve? Let us have a look at the tangents on thmoBiye

draw the lines GreeRoint, Bluepoint and GreerPoint2, Bluepoint. Look at the angle they make, it is

as sharp as the dent in the curve. What if we make the angle bigger? What if we make the angle 180°?
Try a few positions for Greepoint2 and end withtdeclare Green Point2 = <1.00, 4.50>;. A smooth

curve. If we make sure that the two control points and the connection point are on one line, the curve is
perfectly smooth. In general this can be achieveddylare Green_Point2 = Blue_Point+(Blue_Point-
Green_Point);

Figure 3.8: smooth beziexpline lathe

The concept of splines is a handy and necessary one, which will be seen again in the prism and polygon
objects. But with a little tinkering we can quickly get a feel for working with them.

3.1.2 Surface of Revolution Object

Bottles, vases and glasses make nice objects in ray-traced scenes. We want to create a golden cup using the
surface of revolutiombject (SOR object).

We first start by thinking about the shape of the final object. It is quite difficult to come up with a set of
points that describe a given curve without the help of a modeling program supporting POV-Ray'’s surface of
revolution object. If such a program is available we should take advantage of it.

We will use the point configuration shown in the figure above. There are eight points describing the curve
that will be rotated about the y-axis to get our cup. The curve was calculated using the method described in
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Figure 3.9: The point configuration of our cup object.

the reference section (see “Surface of Revolution”).

Now it is time to come up with a scene that uses the above SOR object. We create a filegaled. pov
and enter the following text.

#include "colors.inc"
#include "golds.inc"
camera {
location <10, 15, -20>
look_at <0, 5, 0>
angle 45
}
background { color rgb<0.2, 0.4, 0.8> }
light_source { <100, 100, -100> color rgb 1 }
plane {
y, 0
pigment { checker color Red, color Green scale 10 }

}

sor

8!

<0.0, -0.5>,
<3.0, 0.0>,
<1.0, 0.2>,
<0.5, 0.4>,
<0.5, 4.0>,
<1.0, 5.0>,
<3.0, 10.0>,
<4.0, 11.0>
open

texture { T_Gold_1B }
}

The scene contains our cup object resting on a checkered plane. Tracing this scene results in the image
below.

The surface of revolution is described by starting with the number of points followed by the points. Points
from second to last but one are listed with ascending heights. Each of them determines the radius of the
curve for a given height. E. g. the first valid point (second listed) tells POV-Ray that at height 0.0 the radius

is 3. We should take care that each point has a larger height than its predecessor. If this is not the case the
program will abort with an error message. First and last point from the list are used to determine slope at
beginning and end of curve and can be defined for any height.
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Figure 3.10: A surface of revolution object.

3.1.3 Prism Object

The prism is essentially a polygon or closed curve which is swept along a linear path. We can imagine the

shape so swept leaving a trail in space, and the surface of that trail is the surface of our prism. The curve
or polygon making up a prism’s face can be a composite of any number of sub-shapes, can use any kind of
three different splines, and can either keep a constant width as it is swept, or slowly tapering off to a fine

point on one end. But before this gets too confusing, let's start one step at a time with the simplest form of

prism. We enter and render the following POV code (seefilemdnl . pov).

#include "colors.inc"
background{White}
camera {
angle 20
location <2, 10, -30>
look_at <0, 1, 0>
}
light_source { <20, 20, -20> color White }
prism {
linear_sweep
linear_spline
0, // sweep the following shape from here ...
1, // ... up through here
7, // the number of points making up the shape ...
<3,5>, <=3,5>, <-5,0>, <-3,-5>, <3, -5>, <5,0>, <3,5>
pigment { Green }

}

This produces a hexagonal polygon, which is then swept from y=0 through y=1. In other words, we now
have an extruded hexagon. One point to note is that although this is a six sided figure, we have used a total
of seven points. That is because the polygon is supposed to be a closed shape, which we do here by making
the final point the same as the first. Technically, with linear polygons, if we did not do this, POV-Ray
would automatically join the two ends with a line to force it to close, although a warning would be issued.
However, this only works with linear splines, so we must not get too casual about those warning messages!

Teaching An Old Spline New Tricks

If we followed the section on splines covered under the lathe tutorial (see section “Understanding The
Concept of Splines”), we know that there are two additional kinds of splines besides linear: the quadratic
and the cubic spline. Sure enough, we can use these with prisms to make a more free form, smoothly
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Figure 3.11: A hexagonal prism shape.

curving type of prism.

There is just one catch, and we should read this section carefully to keep from tearing our hair out over
mysterious “too few points in prism” messages which keep our prism from rendering. We can probably
guess where this is heading: how to close a non-linear spline. Unlike the linear spline, which simply draws
a line between the last and first points if we forget to make the last point equal to the first, quadratic and
cubic splines are a little more fussy.

First of all, we remember that quadratic splines determine the equation of the curve which connects any
two points based on those two points and the previous point, so the first point in any quadratic spline is just
control pointand will not actually be part of the curve. What this means is: when we make our shape out
of a quadratic spline, we must match the second point to the last, since the first point is not on the curve - it
is just a control point needed for computational purposes.

Likewise, cubic splines need both the first and last points to be control points, therefore, to close a shape
made with a cubic spline, we must match the second point to the second from last point. If we do not match
the correct points on a quadratic or cubic shape, that is when we will get the “too few points in prism” error.
POV-Ray is still waiting for us to close the shape, and when it runs out of points without seeing the closure,
an error is issued.

Confused? Okay, how about an example? We replace the prism in our last bit of code with this one (see file
prismdmZ.pov)

prism {
cubic_spline
0, // sweep the following shape from here ...
, // ... up through here
, // the number of points making up the shape ...
3, =5>, // point#l (control point... not on curve)
3, 5>, // point#2 ... THIS POINT ...
-5, 0>, // point#3
3, =-5>, // point#4
3, 5>, // point#5 ... MUST MATCH THIS POINT
<=5, 0> // point#6 (control point... not on curve)
pigment { Green }

}

1
6
<
<
<
<
<

This simple prism produces what looks like an extruded triangle with its corners sanded smoothly off.
Points two, three and four are the corners of the triangle and point five closes the shape by returning to the
location of point two. As for points one and six, they are our control points, and are not part of the shape -
they are just there to help compute what curves to use between the other points.
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Figure 3.12: A cubic, triangular prism shape.

Smooth Transitions

Now a handy thing to note is that we have made point one equal point four, and also point six equals point
three. Yes, this is important. Although this prism would still be legally closed if the control points were not
what we have made them, the curve transitions between points would not be as smooth. We change points
one and six ta<4,6> and<0,7> respectively and re-render to see how the back edge of the shape is altered
(see fileprismdm3.pov).

To put this more generally, if we want a smooth closure on a cubic spline, we make the first control point
equal to the third from last point, and the last control point equal to the third point. On a quadratic spline,
the trick is similar, but since only the first point is a control point, make that equal to the second from last
point.

Multiple Sub-Shapes

Just as with the polygon object (see section “Polygon Object”) the prism is very flexible, and allows us to
make one prism out of several sub-prisms. To do this, all we need to do is keep listing points after we have
already closed the first shape. The second shape can be simply an add on going off in another direction
from the first, but one of the more interesting features is that if any even number of sub-shapes overlap,
that region where they overlap behaves as though it has been cut away from both sub-shapes. Let’s look at
another example. Once again, same basic code as before for camera, light and so forth, but we substitute
this complex prism (see filer i smdm4 . pov).

prism {
linear_sweep
cubic_spline
0, // sweep the following shape from here ...
1, // ... up through here
18, // the number of points making up the shape ...
<3,-5>, <3,5>, <=5,0>, <3, -5>, <3,5>, <-5,0>,//sub-shape #1
<2,-4>, <2,4>, <-4,0>, <2,-4>, <2,4>, <-4,0>, //sub-shape #2
<1,-3>, <1,3>, <-3,0>, <1, -3>, <1,3>, <-3,0> //sub-shape #3
pigment { Green }

}

For readability purposes, we have started a new line every time we moved on to a new sub-shape, but the
ray-tracer of course tells where each shape ends based on whether the shape has been closed (as described
earlier). We render this new prism, and look what we have got. It is the same familiar shape, but it now
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Figure 3.13: Using sub-shapes to create a more complex shape.

looks like a smaller version of the shape has been carved out of the center, then the carved piece was sanded
down even smaller and set back in the hole.

Simply, the outer rim is where only sub-shape one exists, then the carved out part is where sub-shapes one
and two overlap. In the extreme center, the object reappears because sub-shapes one, two, and three overlap,
returning us to an odd number of overlapping pieces. Using this technique we could make any number of
extremely complex prism shapes!

Conic Sweeps And The Tapering Effect

In our original prism, the keywortlinear_sweep is actually optional. This is the default sweep assumed for

a prism if no type of sweep is specified. But there is another, extremely useful kind of sweep: the conic

sweep. The basic idea is like the original prism, except that while we are sweeping the shape from the first
height through the second height, we are constantly expanding it from a single point until, at the second
height, the shape has expanded to the original points we made it from. To give a small idea of what such
effects are good for, we replace our existing prism with this (seefilendm4 . pov):

prism {
conic_sweep
linear_spline
0, // height 1
1, // height 2
5, // the number of points making up the shape...
<4,4>,<-4,4>,<-4,-4>,<4,-4>,<4, 4>
rotate <180, 0, 0>
translate <0, 1, 0>
scale <1, 4, 1>
pigment { gradient y scale .2 }
}

The gradient pigment was selected to give some definition to our object without having to fix the lights and
the camera angle right at this moment, but when we render it, what have we created? A horizontally striped
pyramid! By now we can recognize the linear spline connecting the four points of a square, and the familiar
final point which is there to close the spline.

Notice all the transformations in the object declaration. That is going to take a little explanation. The rotate
and translate are easy. Normally, a conic sweep starts full sized at the top, and tapers to a point at y=0, but
of course that would be upside down if we are making a pyramid. So we flip the shape around the x-axis
to put it right side up, then since we actually orbited around the point, we translate back up to put it in the
same position it was in when we started.
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Figure 3.14: Creating a pyramid using conic sweeping.

The scale is to put the proportions right for this example. The base is eight units by eight units, but the
height (from y=1 to y=0) is only one unit, so we have stretched it out a little. At this point, we are probably
thinking, “why not just sweep up from y=0 to y=4 and avoid this whole scaling thing?”

That is a very important gotcha! with conic sweeps. To see what is wrong with that, let’s try and put it into
practice (see fileprismdm5.pov). We must make sure to remove the scale statement, and then replace the
line which reads

1, // height 2
with
4, // height 2

This sets the second height at y=4, so let’s re-render and see if the effect is the same.

Figure 3.15: Choosing a second height larger than one for the conic sweep.

Whoa! Our height is correct, but our pyramid’s base is now huge! What went wrong here? Simple. The
base, as we described it with the points we used actually occurs at y=1 no matter what we set the second
height for. But if we do set the second height higher than one, once the sweep passes y=1, it keeps expanding
outward along the same lines as it followed to our original base, making the actual base bigger and bigger
as it goes.

To avoid losing control of a conic sweep prism, it is usually best to let the second height stay at y=1, and use
a scale statement to adjust the height from its unit size. This way we can always be sure the base’s corners
remain where we think they are.

That leads to one more interesting thing about conic sweeps. What if we for some reason do not want them
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to taper all the way to a point? What if instead of a complete pyramid, we want more of a ziggurat step?

Easily done. After putting the second height back to one, and replacing our scale statement, we change the
line which reads

0, // height 1
to

0.251, // height 1

Figure 3.16: Increasing the first height for the conic sweep.

When we re-render, we see that the sweep stops short of going all the way to its point, giving us a pyramid

without a cap. Exactly how much of the cap is cut off depends on how close the first height is to the second
height.

3.1.4 Sphere Sweep Object

A Sphere Sweep Obiject is the space a sphere occupies during its movement along a spline.

So we need to specify the kind of spline we want and a list of control points to define that spline. To help
POV-Ray we tell how many control points will be used. In addition, we also define the radius the moving
sphere should have when passing through each of these control points.

The syntax of the spher®veep object is:

sphere_sweep {
linear_spline | b_spline | cubic_spline
NUM_OF_SPHERES,

CENTER, RADIUS,
CENTER, RADIUS,

CENTER, RADIUS
[tolerance DEPTH_TOLERANCE]
[OBJECT_MODIFIERS]

}

An example for a linear Sphere Sweep would be:

sphere_sweep {
linear_spline
4!
<=5, =5, 0>, 1
<=5, 5, 0>, 1
<5, =5 0> 1
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<5, 5 0> 1
}

This object is described by four spheres. You can use as many spheres as you like to describe the object, but
you will need at least two spheres for a linear Sphere Sweep, and four spheres for one approximated with a
cubicspline or hspline.

The example above would result in an object shaped like the letter “N”. The sphere sweep goesdhrough
points which are connected with straight cones.

Changing the kind of interpolation to a cutspline produces a quite different, slightly bent, object. It then
starts at the second sphere and ends at the last but one. Since the first and last points are used to control the
spline, you need two more points to get a shape that can be compared to the linear sweep. Let's add them:

sphere_sweep {
cubic_spline

’
-4, =5, 0>, 1
-5, =5, 0>, 1
-5, 5, 0>, 0.
5, =5, 0>, 0.
5 1
1

AN AN AN A A O

4 5’ O>!
<4, 5, 0>,
tolerance 0.1

}

So the cubic sweep creates a smooth sphere sweep actually going through all points (except the first and
last one). In this example the radius of the second and third spheres have been changed. We also added the
“tolerance” keyword, because dark spots appeared on the surface with the default value (0.000001).

When using a Ispline, the resulting object is somewhat similar to the cubic sweep, but does not actually
go through the control points. It lies somewhere between them.

3.1.5 Bicubic Patch Object

Bicubic patches are useful surface representations because they allow an easy definition of surfaces using
only a few control points. The control points serve to determine the shape of the patch. Instead of defining
the vertices of triangles, we simply give the coordinates of the control points. A single patch has 16 control
points, one at each corner, and the rest positioned to divide the patch into smaller sections. POV-Ray
does not ray trace the patches directly, they are approximated using triangles as described in the Scene
Description Language section.

Bicubic patches are almost always created by using a third party modeler, but for this tutorial we will
manipulate them by hand. Modelers that support Bicubic patches and export to POV-Ray can be found in
the links collection on our server

Let’s set up a basic scene and start exploring the Bicubic patch.

#version 3.5;

global_settings {assumed_gamma 1.0}

background {rgb <1,0.9,0.9>}

camera {location <1.6,5,-6> look_at <1.5,0,1.5> angle 40}
light_source {<500,500,-500> rgb 1 }

#declare B11=<0,0,3>; #declare B12=<1,0,3>; //
#declare B13=<2,0,3>; #declare B14=<3,0,3>; // row 1

Lhttp://www.povray.org/links/
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#declare B21=<0,0,2>; #declare B22=<1,0,2>; //
#declare B23=<2,0,2>; #declare B24=<3,0,2>; // row 2

#declare B31=<0,0,1>; #declare B32=<1,0,1>; //
#declare B33=<2,0,1>; #declare B34=<3,0,1>; // row 3

#declare B41=<0,0,0>; #declare B42=<1,0,0>; //
#declare B43=<2,0,0>; #declare B44=<3,0,0>; // row 4

bicubic_patch {
type 1 flatness 0.001
u_steps 4 v_steps 4
uv_vectors
<0,0> <1,0> <1,1> <0,1>
B11, B12, B13, Bl4
B21, B22, B23, B24
B31, B32, B33, B34
B41, B42, B43, B44
uv_mapping
texture {
pigment {
checker
color rgbf <1,1,1,0.5>
color rgbf <0,0,1,0.7>
scale 1/3
}
finish {phong 0.6 phong_size 20}
}
no_shadow

}

The points B11, B14, B41, B44 are the corner points of the patch. All other points are control points.

The names of the declared points are as follows: B for the colour of the patch, the first digit gives the row
number, the second digit the column number. If you render the above scene, you will get a blue & white
checkered square, not very exciting. First we will add some spheres to make the control points visible.
As we do not want to type the code for 16 spheres, we will use an array and a while loop to construct the
spheres.

#declare Points=array[16]{
B11, B12, B13, Bl4
B21, B22, B23, B24
B31, B32, B33, B34
B41, B42, B43, B44
}
#declare I=0;
#while (I<16)
sphere {
Points[I],0.1
no_shadow
pigment {
#if (I=0]I=3|I=12]1I=15)
color rgb <1,0,0>
#telse
color rgb <0,1,1>
#end

}
#declare I=I+1;
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#end

Rendering this scene will show the patch with its corner points in red and its control points in cyan. Now it
is time to start exploring.

Change B41 ta<-1, 0, 0> and render.

Change B41 te:-1,1, 0> and render.

Change B41 teac 1,2,1> and render.

Let's do some exercise with the control points. Start with a flat patch again.

Change B42 ta<1, 2, 0> and B43 to<2, -2, 0> and render.

Change B42 and B43 back to their original positions and try B344@, 1> and B24 to<2,-2,2> and
render. Move the points around some more, also try the control points in the middle.

[ ] [

@

Figure 3.17: Bicubigoatch with control points

After all this we notice two things:
» The patch always goes through the corner points.
 In most situations the patch does not go through the control points.

Now go back to our spline work shop and have a look at the berime again. Indeed, the points B11,
B12,B13,B14, make up a bezispline. So do the points B11,B21,B31,B41 and B41,B42,B43,B44 and
B14,B24,B34,B44.

So far we have only been looking at one single patch, but one of the strengths of the Bicubic patch lays in
the fact that they can be connected smoothly, to form bigger shapes. The process of connecting is relatively
simple as there are actually only two rules to follow. It can be done by using a well set up set of macros or
by using a modeler. To give an idea what is needed we will do a simple example by hand.

First put the patch in our scene back to its flat position. Then change&are B14 = <3,0,3>; #declare

B24 = <3,2,2>; #declare B34 = <3.5,1,1> ; #declare B44 = <3,-1,0>; #declare B4l = <0,-1,

0>; Move the camera a bit baelmera { location <3.1,7,-8> look.at <3,-2,1.5> angle 40 } and

delete all the code for the spheres. We will now try and stitch a patch to the right side of the current one.
Off course the points on the left side (column 1) of the new patch have to be in the same position as the
points on the right side (column 4) of the blue one.

Render the scene, including our new patch:

#declare R11=Bl14; #declare R12=<4,0,3>; //
#declare R13=<5,0,3>; #declare R14=<6,0,3>; // row 1

#declare R21=B24; #declare R22=<4,0,2>; //
#declare R23=<5,0,2>; #declare R24=<6,0,2>; // row 2

#declare R31=B34; #declare R32=<4,0,1>; //
#declare R33=<5,0,1>; #declare R34=<6,0,1>; // row 3

#declare R41=B44; f#declare R42=<4,0,0>; //
#declare R43=<5,0,0>; #declare R44=<6,0,0>; // row 4
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bicubic_patch {
type 1 flatness 0.001
u_steps 4 v_steps 4
uv_vectors
<0,0> <1,0> <1,1> <0,1>
R11, R12, R13, R14
R21, R22, R23, R24
R31, R32, R33, R34
R41, R42, R43, R44
uv_mapping
texture {
pigment {
checker
color rgbf <1,1,1,0.5>
color rgbf <1,0,0,0.7>
scale 1/3
}
finish {phong 0.6 phong_size 20}
}
no_shadow

}

This is a rather disappointing result. The patches are connected, but not exactly smooth. In connecting
patches the same principles apply as for connecting two 2D bezier splines as we see in the spline workshop.
Control point, connection point and the next control point should be on one line to give a smooth result.
Also it is preferred, not required, that the distances from both control points to the connection point are the
same. For the Bicubic patch we have to do the same, for all connection points involved in the joint. So, in
our case, the following points should be on one line:

* B13, B14=R11, R12
B23, B24=R21, R22
» B33, B34=R31, R32
* B43, B44=R41, R42

To achieve this we do:

#declare R12=B14+ (B14-B13);
#declare R22=B24+ (B24-B23);
#declare R32=B34+(B34-B33)

( )

#declare R42=B44+ (B44-B43

’

’

Ty

»

Figure 3.18: patches, (un)smoothly connected

This renders a smooth surface. Adding a third patch in front is relative simple now:

#declare G11=B41; #declare G12=B42; //
#declare G13=B43; #declare G14=B44; // row 1

#declare G21=B41+(B41-B31); #declare G22=B42+ (B42-B32); //
#declare G23=B43+(B43-B33); #declare G24=B44+(B44-B34); // row 2

#declare G31=<0,0,-2>; #declare G32=<1,0,-2>; //
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#declare G33=<2,0,-2>; #declare G34=<3,2,-2>; // row 3
#declare G41=<0,0,-3>; #declare G42=<1,0,-3>; //
#declare G43=<2,0,-3>; #declare G44=<3,0,-3> // row 4

bicubic_patch {
type 1 flatness 0.001
u_steps 4 v_steps 4
uv_vectors
<0,0> <1,0> <1,1> <0,1>
Gl1, G12, G13, Gl4
G21, G22, G23, G24
G31, G32, G33, G34
G41, G42, G43, G44
uv_mapping
texture {
pigment {
checker
color rgbf <1,1,1,0.5>
color rgbf <0,1,0,0.7>
scale 1/3
}
finish {phong 0.6 phong_size 20}
}
no_shadow

}

Finally, let’s put a few spheres back in the scene and add some cylinders to visualize what is going on. See
what happens if you move for example B44, B43, B33 or B34.

#declare Points=array[8]{B33,B34,R32,B43,B44,R42,G23,G24}
#declare I=0;
#while (I<8)
sphere {
Points[I],0.1
no_shadow
pigment{
#if (I=4)
color rgb <1,0,0>
telse
color rgb <0,1,1>
#end

}
#declare I=I+1;

#end

union {
cylinder {B33,B34,0.04} cylinder {B34,R32,0.04}
cylinder {B43,B44,0.04} cylinder {B44,R42,0.04}
cylinder {G23,G24,0.04}
cylinder {B33,B43,0.04} cylinder {B43,G23,0.04}
cylinder {B34,B44,0.04} cylinder {B44,G24,0.04}
cylinder {R32,R42,0.04}
no_shadow
pigment {color rgb <1,1,0>}

}

The hard part in using the Bicubic patch is not in connecting several patches. The difficulty is keeping
control over the shape you want to build. As patches are added, in order to keep the result smooth, control
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over the position of many points gets restrained.

Figure 3.19: 3 patches, some control points

3.1.6 Text Object

Thetext object is a primitive that can use TrueType fonts and TrueType Collections to create text objects.
These objects can be used in CSG, transformed and textured just like any other POV primitive.

For this tutorial, we will make two uses of the text object. First, let’s just make some block letters sitting on
a checkered plane. Any TTF font should do, but for this tutorial, we will usetherom.ttf ofr cyrvetic.
ttf which come bundled with POV-Ray.

We create a file calletkxtdemo.pov and edit it as follows:

#include "colors.inc"
camera {
location <0, 1, -10>
look_at 0
angle 35

}
light_source { <500,500,-1000> White }
plane {

v, 0
pigment { checker Green White }

}

Now let's add the text object. We will use the fontimrom.ttf and we will create the string “POV-RAY

3.0". For now, we will just make the letters red. The syntax is very simple. The first string in quotes is the
font name, the second one is the string to be rendered. The two floats are the thickness and offset values.
The thickness float determines how thick the block letters will be. Values of .5 to 2 are usually best for this.
The offset value will add to the kerning distance of the letters. We will leave this a O for now.

text {
ttf "timrom.ttf" "POV-RAY 3.0" 1, 0
pigment { Red }

}

Rendering this at 200x15@,, we notice that the letters are off to the right of the screen. This is because
they are placed so that the lower left front corner of the first letter is at the origin. To center the string we
need to translate it -x some distance. But how far? In the docs we see that the letters are all 0.5 to 0.75 units
high. If we assume that each one takes about 0.5 units of space on the x-axis, this means that the string is
about 6 units long (12 characters and spaces). Let’s translate the string 3 units along the negative x-axis.
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text {
ttf "timrom.ttf" "POV-RAY 3.0" 1, O
pigment { Red }
translate -3*x

}

That is better. Now let’s play around with some of the parameters of the text object. First, let's raise the
thickness float to something outlandish... say 25!

text {
ttf "timrom.ttf" "POV-RAY 3.0" 25, 0
pigment { Red }
translate -2.25*%x

}

Actually, that is kind of cool. Now let's return the thickness value to 1 and try a different offset value.
Change the offset float from 0 to 0.1 and render it again.

Wait a minute?! The letters go wandering off up at an angle! That is not what the docs describe! It almost
looks as if the offset value applies in both the x- and y-axis instead of just the x axis like we intended. Could
it be that a vector is called for here instead of a float? Let's try it. We replaceith 0.1*x and render it

again.

That works! The letters are still in a straight line along the x-axis, just a little further apart. Let's verify this
and try to offset just in the y-axis. We replace 1*x with 0.1*y. Again, this works as expected with the
letters going up to the right at an angle with no additional distance added along the x-axis. Now let's try
the z-axis. We replacen.1*y with 0.1*z. Rendering this yields a disappointment. No offset occurs! The
offset value can only be applied in the x- and y-directions.

Let’s finish our scene by giving a fancier texture to the block letters, using that cool large thickness value,
and adding a slight y-offset. For fun, we will throw in a sky sphere, dandy up our plane a bit, and use a little
more interesting camera viewpoint (we render the following scene at 640x48():

#include "colors.inc"
camera {
location <-5,.15,-2>
look_at <.3,.2,1>
angle 35
}
light_source { <500,500,-1000> White }
plane {
vy, 0
texture {
pigment { SeaGreen }
finish { reflection .35 specular 1 }
normal { ripples .35 turbulence .5 scale .25 }
}
}
text {
ttf "timrom.ttf" "POV-RAY 3.0" 25, 0.1*y
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x
}
#include "skies.inc"
sky_sphere { S_Cloud5 }

Let's try using text in a CSG object. We will attempt to create an inlay in a stone block using a text object.
We create a new file calle@xtcsg.pov and edit it as follows:
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#include "colors.inc"
#include "stones.inc"
background { color rgb 1 }
camera {

location <=3, 5, -15>

look_at 0

angle 25

}
light_source { <500,500,-1000> White }

Now let’s create the block. We want it to be about eight units across because our text string “POV-RAY
3.0” is about six units long. We also want it about four units high and about one unit deep. But we need to
avoid a potential coincident surface with the text object so we will make the first z-coordinate 0.1 instead
of 0. Finally, we will give this block a nice stone texture.

box {
<-3.5, -1, 0.1>, <3.5, 1, 1>
texture { T_Stonel0 }

}

Next, we want to make the text object. We can use the same object we used in the first tutorial except we
will use slightly different thickness and offset values.

text {
ttf "timrom.ttf" "POV-RAY 3.0" 0.15, 0
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

}

We remember that the text object is placed by default so that its front surface lies directly on the x-y-plane.
If the front of the box begins at z=0.1 and thickness is set at 0.15, the depth of the inlay will be 0.05 units.
We place a difference block around the two objects.

difference {

box {
<-3.5, -1, 0.1>, <3.5, 1, 1>
texture { T_Stonel( }

}

text {
ttf "timrom.ttf" "POV-RAY 3.0" 0.15, 0
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

}

We render this at 200x15@. We can see the inlay clearly and that it is indeed a bright gold color. We
re-render at 640x480:20.2 to see the results more clearly, but be forewarned... this trace will take a little
time.

3.2 Polygon Based Shapes

3.2.1 Mesh Object

You know you have been raytracing too long when ...
... You think that the evolution theory was based on the triangular origin of the wheel.
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Figure 3.20: Text carved from stone.

— Mark Kadela

Mesh objects are very useful because they allow us to create objects containing hundreds or thousands of
triangles. Compared to a simple union of triangles the mesh object stores the triangles more efficiently.
Copies of mesh objects need only a little additional memory because the triangles are stored only once.

Almost every object can be approximated using triangles but we may need a lot of triangles to create more
complex shapes. Thus we will only create a very simple mesh example. This example will show a very
useful feature of the triangles meshes though: a different texture can be assigned to each triangle in the
mesh.

Now let's begin. We will create a simple box with differently colored sides. We create an empty file
calledmeshdemo.pov and add the following lines. Note that a mesh is - not surprisingly - declared using the
keywordmesh.

camera {
location <20, 20, -50>
look_at <0, 5, 0>
}
light_source { <50, 50, -50> color rgb<l, 1, 1> }
#declare Red = texture {
pigment { color rgb<0.8, 0.2, 0.2> }
finish { ambient 0.2 diffuse 0.5 }
}
#declare Green = texture {
pigment { color rgb<0.2, 0.8, 0.2> }
finish { ambient 0.2 diffuse 0.5 }
}
#declare Blue = texture {
pigment { color rgb<0.2, 0.2, 0.8> }
finish { ambient 0.2 diffuse 0.5 }
}

We must declare all textures we want to use inside the mesh before the mesh is created. Textures cannot be
specified inside the mesh due to the poor memory performance that would result.

Now we add the mesh object. Three sides of the box will use individual textures while the other will use
the global mesh texture.

mesh {
/* top side */
triangle {
<-10, 10, -10», <10, 10, -10», <10, 10, 10>
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texture { Red }
}
triangle {
<-10, 10, -10», <-10, 10, 10>, <10, 10, 10>
texture { Red }
}
/* bottom side */
triangle { <-10, -10, -10», <10, -10, -10», <10, -10, 10> }
triangle { <-10, -10, -10», <-10, -10, 10>, <10, -10, 10> }
/* left side */
triangle { <-10, -10, -10», <-10, -10, 10>, <-10, 10, 10> }
triangle { <-10, -10, -10», <-10, 10, -10>, <-10, 10, 10> }
/* right side */
triangle {
<10, -10, -10», <10, -10, 10>, <10, 10, 10>
texture { Green }
}
triangle {
<10, -10, -10», <10, 10, -10>, <10, 10, 10>
texture { Green }
}
/* front side */
triangle {
<-10, -10, -10», <10, -10, -10>, <-10, 10, -10>
texture { Blue }
}
triangle {
<-10, 10, -10», <10, 10, -10>, <10, -10, -10>
texture { Blue }
}
/* back side */
triangle { <-10, -10, 10>, <10, -10, 10>, <-10, 10, 10> }
triangle { <-10, 10, 10>, <10, 10, 10>, <10, -10, 10> }
texture {
pigment { color rgb<0.9, 0.9, 0.9> }
finish { ambient 0.2 diffuse 0.7 }

}

Tracing the scene at 320x240 we will see that the top, right and front side of the box have different textures.
Though this is not a very impressive example it shows what we can do with mesh objects. More complex
examples, also using smooth triangles, can be found under the scene directorsash.pov.

3.2.2 Mesh2 Object

Themesh2 is a representation of a mesh, that is much more like POV-Ray’s internal mesh representation
than the standareksh. As a result, it parses faster and it file size is smaller.

Due to its natureyeshz2 is not really suitable for building meshes by hand, it is intended for use by modelers
and file format converters. An other option is building the meshes by macros. Yet, to understand the format,
we will do a small example by hand and go through all options.

We will turn the mesh sketched above intash2 object. The mesh is made of 8 triangles, each with 3
vertices, many of these vertices are shared among the triangles. This can later be used to optimize the mesh.
First we will set it up straight forward.

In mesh2 all the vertices are listed in a list nameektex vectors{}. A second listface_indices{}, tells us
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=0,1,0= =05.1,0= =1,10=

<0,0,0= =0.5,00= =1,00=

Figure 3.21: to be written as mesh2

how to put together three vertices to create one triangle, by pointing to the index number of a vertex. All
lists inmesh2 are zero based, the number of the first vertex is 0. The very first item in a list is the amount
of vertices, normals or uvectors it containsmesh2 has to be specified in the orddECTORS., LISTS...
INDICES...

Lets go through the mesh above, we do it counter clockwise. The total amount of vertices is 24 (8 triangle
* 3 vertices).

mesh2 {
vertex_vectors {
24,

Now we can add the coordinates of the vertices of the first triangle:

mesh2 {
vertex_vectors {
24,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>

Next step, is to tell the mesh how the triangle should be created; There will be a total of iBdams (8
triangles). The first point in the first face, points to the first vestegtor (0: <0,0,0>), the second to the
second (1<0.5,0,0>), etc...

mesh2 {
vertex_vectors {
24,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>

}

face_indices {
8,
<0,1,2>

The complete mesh:

mesh?2 {
vertex_vectors {
24,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>, //1
<0.5,0,0>, <1,0,0>, <0.5,0.5,0>, //2
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<1,0,0>, <1,0.5,0>, <0.5,0.5,0>, //3
<1,0.5,0>, <1,1,0>, <0.5,0.5,0>, //4
<1,1,0>, <0.5,1,0>, <0.5,0.5,0>, //5
<0.5,1,0>, <0,1,0>, <0.5,0.5,0>, //6
<0,1,0>, <0,0.5,0>, <0.5,0.5,0>, //7
<0,0.5,0», <0,0,0>, <0.5,0.5,0> //8

}

face_indices {

81

<0,1,2>, <3,4,5>, //1 2
<6,7,8>, <9,10,11>, //3 4
<12,13,14>, <15,16,17>, //5 6
<18,19,20>, <21,22,23> //7 8

}
pigment {rgb 1}
}

As mentioned earlier, many vertices are shared by triangles. We can optimize the mesh by removing all
duplicate vertices but one. In the example this reduces the amount from 24 to 9.

mesh2 {
vertex_vectors {

9,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
/*as 1*/ <1,0,0>, /*as 2%/
/*as 3*/ <1,0.5,0>, /*as 2%/
/*as 4%/ <1,1,0>, /*as 2%/
/*as 5*/ <0.5,1,0>, /*as 2*/
/*as 6*/ <0,1,0>, /*as 2%/
/*as 7%/ <0,0.5,0>, /*as 2%/
/*as 8%/ /*as 0*/  /*as 2%/

Next step is to rebuild the list of fadedices, as they now point to indices in thetex_vector{} list that
do not exist anymore.

face_indices {
8,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>
}
pigment {rgb 1}

Smooth triangles and mesh2

In case we want a smooth mesh, the same steps we did also apply to the normals in a mesh. For each
vertex there is one normal vector listednistmal_vectors{}, duplicates can be removed. If the number of
normals equals the number of vertices thendhal_indices{} list is optional and the indexes from the
face_indices{} list are used instead.

mesh2 {
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vertex_vectors {
9,
<0,0,0>, <0.5,0,0>», <0.5,0.5,0>,
<1,0,0>», <1,0.5,0>, <1,1,0>,
<0.5,1,0», <0,1,0>, <0,0.5,0>
}
normal_vectors {
9,
<-1,-1,0»,<0,-1,0>, <0,0,1>,
/*as 1*/ <1,-1,0>, /*as 2%/
/*as 3%/ <1,0,0>, /*as 2%/
/*as 4%/ <1,1,0>, /*as 2*/
/*as 5%/ <0,1,0>, /*as 2%/
/*as 6%/ <-1,1,0>, /*as 2%/
/*as 7%/ <-1,0,0>, /*as 2*/
/*as 8%/ /*as 0%/ /*as 2%/
}
face_indices {
8/
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>
}
pigment {rgb 1}
}

When a mesh has a mix of smooth and flat triangles a list 6fa1_indices{} has to be added, where each
entry points to what vertices a normal should be applied. In the example below only the first four normals
are actually used.

mesh2 {
vertex_vectors {
9!
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>,
<0.5,1,0>, <0,1,0>, <0,0.5,0>
}
normal_vectors {
9!
<-1,-1,0>, <0,-1,0>, <0,0,1>,
<1,-1,0>, <1,0,0>, <1,1,0>,
<0,1,0», <-1,1,0>, <-1,0,0>
}
face_indices {
81
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>
}
normal_indices {
4,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>
}
pigment {rgb 1}
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UV mapping and mesh2

uv_mapping is a method of ’sticking’ 2D textures on an object in such a way that it follows the form of the
object. For uvmapping on triangles imagine it as follows; First you cut out a triangular section of a texture
form the xy-plane. Then stretch, shrink and deform the piece of texture to fit to the triangle and stick it on.

Now, in mesh2 we first build a list of 2D-vectors that are the coordinates of the triangular sections in the
xy-plane. This is theiwv_vectors{} list. In the example we map the texture from the rectangular area
<-0.5,-0.5>, <0.5,0.5> to the triangles in the mesh. Again we can omit all duplicate coordinates

mesh2 {
vertex_vectors {
9!
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>,
<0.5,1,0>, <0,1,0>, <0,0.5,0>
}
uv_vectors {
9
<-0.5,-0.5>,<0,-0.5>, <0,0>,
/*as 1*/ <0.5,-0.5>,/*as 2%/
/*as 3%/ <0.5,0>, /*as 2%/
/*as 4*/  <0.5,0.5>, /*as 2%/
/*as 5*/  <0,0.5>, /*as 2%/
/*as 6%/ <-0.5,0.5>,/*as 2*/
/*as 7*/ <-0.5,0>, /*as 2%/
/*as 8*/  /*as 0%/ /*as 2%/
}
face_indices {
8/
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>
}
uv_mapping
pigment {wood scale 0.2}

}

Just as with theornal vectors, if the number ofuv_vectors equals the number of vertices then the-
indices{} listis optional and the indices from thece_indices{} list are used instead.

In contrary to therormal_indices list, if the uv_indices list is used, the amount of indices should be equal
to the amount oface_indices. In the example below only 'one texture section’ is specified and used on all
triangles, using thev_indices.

mesh2 {
vertex_vectors {
9/
<0,0,0>», <0.5,0,0>», <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>,
<0.5,1,0>, <0,1,0>, <0,0.5,0>
}
uv_vectors {
3
<0,0>, <0.5,0>, <0.5,0.5>
}
face_indices {
81
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<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>

uv_indices {
81
<0,1,2>, <0,1,2>,
<0,1,2>, <0,1,2>,
<0,1,2>, <0,1,2>,
<0,1,2>, <0,1,2>
}
uv_mapping
pigment {gradient x scale 0.2}

A separate texture per triangle

By using thetexture_list it is possible to specify a texture per triangle or even per vertex in the mesh.
In the latter case the three textures per triangle will be interpolated. To let POV-Ray know what texture to
apply to a triangle, the index of a texture is added tofthe _indices list, after the face index it belongs to.

mesh2 {
vertex_vectors {
9!
<0,0,0>», <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>
<0.5,1,0», <0,1,0>, <0,0.5,0>
}
texture_list {
2!
texture{pigment {rgb<0,0,1>}}
texture{pigment{rgb<l,0,0>}}
}
face_indices {
8/
<0,1,2>,0, <1,3,2>,1,
<3,4,2>,0, <4,5,2>,1,
<5,6,2>,0, <6,7,2>,1,
<7,8,2>,0, <8,0,2>,1

}
To specify a texture per vertex, three:ture_1ist indices are added after thiece_indices

mesh2 {

vertex_vectors {
9/
<0,0,0>», <0.5,0,0>», <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>
<0.5,1,0>», <0,1,0>, <0,0.5,0>

}

texture_list {
3/
texture{pigment {rgb <0,0,1>}}
texture{pigment{rgb 1}}
texture{pigment{rgb <1,0,0>}}
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face_indices {

8,

<0,1,2>,0,1,2, <1,3,2>,1,0,2,
<3,4,2>,0,1,2, <4,5,2>,1,0,2,
<5,6,2>,0,1,2, <6,7,2>,1,0,2,
<7,8,2>,0,1,2, <8,0,2>,1,0,2

}

Assigning a texture based on thexture_1ist and texture interpolation is done on a per triangle base. So

it is possible to mix triangles with just one texture and triangles with three textures in a mesh. It is even
possible to mix in triangles without any texture indices, these will get their texture from a geaerate
statement in theesh2. uv_mapping is supported for texturing usingexture_list.

3.2.3 Polygon Object
Thepolygon Object can be used to create any planar, n-sided shapes like squares, rectangles, pentagons,
hexagons, octagons, etc.

A polygon is defined by a number of points that describe its shape. Since polygons have to be closed the
first point has to be repeated at the end of the point sequence.

In the following example we will create the word “POV” using just one polygon statement.

We start with thinking about the points we need to describe the desired shape. We want the letters to lie in
the x-y-plane with the letter O being at the center. The letters extend from y=0 to y=1. Thus we get the
following points for each letter (the z coordinate is automatically set to zero).

Letter P (outer polygon):

<-0.8, 0.0>, <-0.8, 1.0>,
<-0.3, 1.0>, <-0.3, 0.5>,
<-0.7, 0.5>, <=0.7, 0.0>

Letter O (outer polygon):

<-0.25, 0.0>, <-0.25, 1.0>,
< 0.25, 1.0>, < 0.25, 0.0>

Letter O (inner polygon):

<-0.15, 0.1>, <-0.15, 0.9>,
0.15, 0.9>, < 0.15, 0.1>

Letter V:

<0.45, 0.0>, <0.30, 1.0>,
<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,
<0.65, 0.0>

Both letters P and O have a hole while the letter V consists of only one polygon. We will start with the letter
V because it is easier to define than the other two letters.

We create a new file callegolygdem.pov and add the following text.
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camera {
orthographic
location <0, 0, -10>
right 1.3 * 4/3 * x
up 1.3 * y
look_at <0, 0.5, 0>
}
light_source { <25, 25, -100> color rgb 1 }

polygon {
8!
<0.45, 0.0>, <0.30, 1.0>, // Letter "V"
<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,
<0.65, 0.0>,
<0.45, 0.0>

pigment { color rgb <1, 0, 0> }
}

As noted above the polygon has to be closed by appending the first point to the point sequence. A closed
polygon is always defined by a sequence of points that ends when a point is the same as the first point.

After we have created the letter V we will continue with the letter P. Since it has a hole we have to find a
way of cutting this hole into the basic shape. This is quite easy. We just define the outer shape of the letter
P, which is a closed polygon, and add the sequence of points that describes the hole, which is also a closed
polygon. That is all we have to do. There will be a hole where both polygons overlap.

In general we will get holes whenever an even number of sub-polygons inside a single polygon statement
overlap. A sub-polygon is defined by a closed sequence of points.

The letter P consists of two sub-polygons, one for the outer shape and one for the hole. Since the hole
polygon overlaps the outer shape polygon we will get a hole.

After we have understood how multiple sub-polygons in a single polygon statement work, it is quite easy
to add the missing O letter.

Finally, we get the complete word POV.

polygon {
30,
<-0.8, 0.0>, <-0.8, 1.0>, // Letter "P"
<-0.3, 1.0>, <-0.3, 0.5>, // outer shape
<-0.7, 0.5>, <=0.7, 0.0>,
<-0.8, 0.0>,
<-0.7, 0.6>, <=0.7, 0.9>, // hole
<-0.4, 0.9>, <-0.4, 0.6>,
<-0.7, 0.6>
<-0.25, 0.0>, <-0.25, 1.0>, // Letter "O"
< 0.25, 1.0>, < 0.25, 0.0>, // outer shape
<-0.25, 0.0>,
<-0.15, 0.1>, <-0.15, 0.9>, // hole
< 0.15, 0.9>, < 0.15, 0.1>,
<=0.15, 0.1>,

<0.45, 0.0>, <0.30, 1.0>, // Letter "V"
<0.40, 1.0>, <0.55, 0.1>,

<0.70, 1.0>, <0.80, 1.0>,

<0.65, 0.0>,

<0.45, 0.0>

pigment { color rgb <1, 0, 0> }
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Figure 3.22: The word

3.3 Other Shapes

3.3.1 Blob Object

Blobs are described as spheres and cylinders covered with “goo” which stretches to smoothly join them (see
section “Blob”).

Ideal for modeling atoms and molecules, blobs are also powerful tools for creating many smooth flowing
“organic” shapes.

A slightly more mathematical way of describing a blob would be to say that it is one object made up of two

or more component pieces. Each piece is really an invisible field of force which starts out at a particular
strength and falls off smoothly to zero at a given radius. Where ever these components overlap in space,
their field strength gets added together (and yes, we can have negative strength which gets subtracted out
of the total as well). We could have just one component in a blob, but except for seeing what it looks like
there is little point, since the real beauty of blobs is the way the components interact with one another.

Let us take a simple example blob to start. Now, in fact there are a couple different types of components
but we will look at them a little later. For the sake of a simple first example, let us just talk about spherical
components. Here is a sample POV-Ray code showing a basic camera, light, and a simple two component
blob:

#include "colors.inc"
background{White}
camera {
angle 15
location <0,2,-10>
look_at <0,0,0>
}
light_source { <10, 20, -10> color White }
blob {
threshold .65
sphere { <.5,0,0>, .8, 1 pigment {Blue}
sphere { <-.5,0,0>,.8, 1 pigment {Pink}
finish { phong 1 }
}

}
}

The threshold is simply the overall strength value at which the blob becomes visible. Any points within the
blob where the strength matches the threshold exactly form the surface of the blob shape. Those less than
the threshold areutsideand those greater than dnsidethe blob.
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Figure 3.23: A simple, two-part blob.

We note that the spherical component looks a lot like a simple sphere object. We have the sphere keyword,
the vector representing the location of the center of the sphere and the float representing the radius of the
sphere. But what is that last float value? That is the individual strength of that component. In a spherical
component, that is how strong the component’s field is at the center of the sphere. It will fall off in a linear
progression until it reaches exactly zero at the radius of the sphere.

Before we render this test image, we note that we have given each component a different pigment. POV-Ray
allows blob components to be given separate textures. We have done this here to make it clearer which parts
of the blob are which. We can also texture the whole blob as one, like the finish statement at the end, which
applies to all components since it appears at the end, outside of all the components. We render the scene
and get a basic kissing spheres type blob.

The image we see shows the spheres on either side, but they are smoothly joined by that bridge section in
the center. This bridge represents where the two fields overlap, and therefore stay above the threshold for
longer than elsewhere in the blob. If that is not totally clear, we add the following two objects to our scene

and re-render. We note that these are meant to be entered as separate sphere objects, not more components
in the blob.

sphere { <.5,0,0>, .8

pigment { Yellow transmit .75 }
}
sphere { <-.5,0,0>, .8

pigment { Green transmit .75 }
}

Figure 3.24: The spherical components made visible.
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Now the secrets of the kissing spheres are laid bare. These semi-transparent spheres show where the
components of the blob actually are. If we have not worked with blobs before, we might be surprised

to see that the spheres we just added extend way farther out than the spheres that actually show up on the
blobs. That of course is because our spheres have been assigned a starting strength of one, which gradually
fades to zero as we move away from the sphere’s center. When the strength drops below the threshold (in
this case 0.65) the rest of the sphere becomes part of the outside of the blob and therefore is not visible.

See the part where the two transparent spheres overlap? We note that it exactly corresponds to the bridge
between the two spheres. That is the region where the two components are both contributing to the overall
strength of the blob at that point. That is why the bridge appears: that region has a high enough strength to
stay over the threshold, due to the fact that the combined strength of two spherical components is overlap-
ping there.

Component Types and Other New Features

The shape shown so far is interesting, but limited. POV-Ray has a few extra tricks that extend its range of
usefulness however. For example, as we have seen, we can assign individual textures to blob components,
we can also apply individual transformations (translate, rotate and scale) to stretch, twist, and squash pieces
of the blob as we require. And perhaps most interestingly, the blob code has been extended to allow
cylindrical components.

Before we move on to cylinders, it should perhaps be mentioned that the old style of components used in
previous versions of POV-Ray still work. Back then, all components were spheres, so it was not necessary
to say sphere or cylinder. An old style component had the form:

component Strength, RadiusCenter-

This has the same effect as a spherical component, just as we already saw above. This is only useful for
backwards compatibility. If we already have POV-Ray files with blobs from earlier versions, this is when
we would need to recognize these components. We note that the old style components did not put braces
around the strength, radius and center, and of course, we cannot independently transform or texture them.
Therefore if we are modifying an older work into a new version, it may arguably be of benefit to convert
old style components into spherical components anyway.

Now for something new and different: cylindrical components. It could be argued that all we ever needed
to do to make a roughly cylindrical portion of a blob was string a line of spherical components together
along a straight line. Which is fine, if we like having extra to type, and also assuming that the cylinder was
oriented along an axis. If not, we would have to work out the mathematical position of each component to
keep it is a straight line. But no more! Cylindrical components have arrived.

We replace the blob in our last example with the following and re-render. We can get rid of the transparent
spheres too, by the way.

blob {
threshold .65
cylinder { <-.75,-.75,0>, <.75,.75,0>, .5, 1}
pigment { Blue }
finish { phong 1 }
}

We only have one component so that we can see the basic shape of the cylindrical component. It is not quite
a true cylinder - more of a sausage shape, being a cylinder capped by two hemispheres. We think of it as if
it were an array of spherical components all closely strung along a straight line.

As for the component declaration itself: simple, logical, exactly as we would expect it to look (assuming
we have been awake so far): it looks pretty much like the declaration of a cylinder object, with vectors
specifying the two endpoints and a float giving the radius of the cylinder. The last float, of course, is the
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strength of the component. Just as with spherical components, the strength will determine the nature and
degree of this component’s interaction with its fellow components. In fact, next let us give this fellow
something to interact with, shall we?

Complex Blob Constructs and Negative Strength

Beginning a new POV-Ray file, we enter this somewhat more complex example:

#include "colors.inc"

background{White}

camera {
angle 20
location<0,2,-10>
look_at<0,0,0>

}

light_source { <10, 20, -10> color White }

blob {
threshold .65
sphere{<-.23,-.32,0>, .43, 1 scale <1.95,1.05,.8>} //palm
sphere{<+.12,-.41,0>, .43, 1 scale <1.95,1.075,.8>} //palm
sphere{<-.23,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //midhand
sphere{<+.19,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //midhand
sphere{<-.22,-.73,0>, .45, .85 scale <1.4, 1.25,1>} //heel
sphere{<+.19,-.73,0>, .45, .85 scale <1.4, 1.25,1>} //heel
cylinder{<-.65,-.28,0>, <-.65,.28,-.05>, .26, 1} //lower pinky
cylinder{<-.65,.28,-.05>, <-.65, .68,-.2>, .26, 1} //upper pinky

cylinder{<-.3,-.28,0>, <-.3,.44,-.05>, .26, 1} //lower ring
cylinder{<-.3,.44,-.05>, <-.3, .9,-.2>, .26, 1} //upper ring
cylinder{<.05,-.28,0>, <.05, .49,-.05>, .26, 1} //lower middle
cylinder{<.05,.49,-.05>, <.05, .95,-.2>, .26, 1} //upper middle
cylinder{<.4,-.4,0>, <.4, .512, -.05>, .26, 1} //lower index

cylinder{<.4,.512,-.05>, <.4, .85, -.2>, .26, 1} //upper index
cylinder{<.41, -.95,0>, <.85, -.68, -.05>, .25, 1} //lower thumb
cylinder{<.85,-.68,-.05>, <1.2, -.4, -.2>, .25, 1} //upper thumb
pigment{ Flesh }

Figure 3.25: A hand made with blobs.

As we can guess from the comments, we are building a hand here. After we render this image, we can
see there are a few problems with it. The palm and heel of the hand would look more realistic if we used

a couple dozen smaller components rather than the half dozen larger ones we have used, and each finger
should have three segments instead of two, but for the sake of a simplified demonstration, we can overlook
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these points. But there is one thing we really need to address here: This poor fellow appears to have horrible
painful swelling of the joints!

A review of what we know of blobs will quickly reveal what went wrong. The joints are places where
the blob components overlap, therefore the combined strength of both components at that point causes
the surface to extend further out, since it stays over the threshold longer. To fix this, what we need are
components corresponding to the overlap region which have a negative strength to counteract part of the
combined field strength. We add the following components to our blob.

sphere{<-.65,.28,-.05>, .26, -1} //counteract pinky knucklebulge
sphere{<-.65,-.28,0>, .26, -1} //counteract pinky palm bulge
sphere{<-.3,.44,-.05>, .26, -1} //counteract ring knuckle bulge
sphere{<-.3,-.28,0>, .26, -1} //counteract ring palm bulge
sphere{<.05,.49,-.05>, .26, -1} //counteract middle knuckle bulge
sphere{<.05,-.28,0>, .26, -1} //counteract middle palm bulge
sphere{<.4,.512,-.05>, .26, -1} //counteract index knuckle bulge
sphere{<.4,-.4,0>, .26, -1} //counteract index palm bulge
sphere{<.85,-.68,-.05>, .25, -1} //counteract thumb knuckle bulge
sphere{<.41,-.7,0>, .25, -.89} //counteract thumb heel bulge

Figure 3.26: The hand without the swollen joints.

Much better! The negative strength of the spherical components counteracts approximately half of the field
strength at the points where to components overlap, so the ugly, unrealistic (and painful looking) bulging is
cut out making our hand considerably improved. While we could probably make a yet more realistic hand
with a couple dozen additional components, what we get this time is a considerable improvement. Any by
now, we have enough basic knowledge of blob mechanics to make a wide array of smooth, flowing organic
shapes!

3.3.2 Height Field Object

A height_field is an object that has a surface that is determined by the color value or palette index number
of an image designed for that purpose. With height fields, realistic mountains and other types of terrain
can easily be made. First, we need an image from which to create the height field. It just so happens that
POV-Ray is ideal for creating such an image.

We make a new file callethage .pov and edit it to contain the following:

#include "colors.inc"

global_settings {
assumed_gamma 2.2
hf_gray_16

}
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Thenf_gray_16 keyword causes the output to be in a special 16 bit grayscale that is perfect for generating
height fields. The normal 8 bit output will lead to less smooth surfaces.

Now we create a camera positioned so that it points directly down the z-axis at the origin.

camera {
location <0, 0, -10>
look_at 0

}

We then create a plane positioned like a wall at z=0. This plane will completely fill the screen. It will be
colored with white and gray wrinkles.

plane { z, 10
pigment {
wrinkles
color_map {
[0 0.3*White]
[1 White]
}
}
}

Finally, create a light source.
light_source { <0, 20, -100> color White }

We render this scene at 640x480 .1 +rT. We will get an image that will produce an excellent height field.
We create a new file calleddemo.pov and edit it as follows:

Note: Windows users, unless you specifyr as above, you will get a .BMP file (which is the default
Windows version output). In this case you will need to sgeinstead of ga in theheight _field Statement
below.

#include "colors.inc"
We add a camera that is two units above the origin and ten units back ...

camera{
location <0, 2, -10>
look_at 0
angle 30

}

... and a light source.
light_source{ <1000,1000,-1000> White }

Now we add the height field. In the following syntax, a Targa image file is specified, the height field is
smoothed, it is given a simple white pigment, it is translated to center it around the origin and it is scaled so
that it resembles mountains and fills the screen.

height_field {
tga "image.tga"

smooth
pigment { White }
translate <-.5, -.5, -.5>

scale <17, 1.75, 17>
}

We save the file and render it at 320x240 Later, when we are satisfied that the height field is the way we
want it, we render it at a higher resolution with anti-aliasing.

Wow! The Himalayas have come to our computer screen!
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Figure 3.27: A height field created completely with POV-Ray.

3.3.3 Isosurface Object

You know you have been raytracing too long when ...
... You find yourself wishing you’d paid attention in math class to all those formulae you thought
you’'d never have any use for in real life.
— Jeff Lee

Isosurfaces are shapes described by mathematical functions.

In contrast to the other mathematically based shapes in POV-Ray, isosurfaces are approximated during
rendering and therefore they are sometimes more difficult to handle. However, they offer many interesting
possibilities, like real deformations and surface displacements

Some knowledge about mathematical functions and geometry is useful, but not necessarily required to work
with isosurfaces.

Simple functions

For the start we will choose a most simple functionThe value of this function is exactly the current
x-coordinate.

The isosurface object takes this function as a user defined function:

isosurface {

function { x }

contained_by { box { -2, 2 } }
}

the resulting shape is fairly simple: a box.

The fact that it is a box is only caused by the container object which is required for an isosurface. You can
either use a box or a sphere for this purpose.

So only one side of the box is made by the function in fact. This surface is where the x-coordinate is 0 since
0 is the default threshold. There usually is no reason to change this, since it is the most common and most
suggestive value, but you can specify something different by adding

threshold 1
to the isosurface definition.

As you can see, the surface is now at x-coordinate 1.
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Figure 3.28: Isosurface sample (functipm })

(‘:‘Z‘

Figure 3.29: Isosurface sample (functipm }, threshold 1)

We can also remove the visible surfaces of the container object by adding the word 'open’ to the isosurface
definition.

Figure 3.30: Isosurface sample (functipm }, open)
For making it clearer what surfaces are the actual isosurface and what are caused by the container object,
the color will be different in all the following pictures.
Now we replace the used function with something different:

function { x+y }
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Figure 3.31: Isosurface sample (plane function)

function { x+y+z }

P
-

Figure 3.32: Isosurface sample (plane function)

Note: 'max_gradient 4’ is added to the isosurface definition here, this will be explained later on.

All these functions describe planes going through the origin. The function just describes the normal vector
of this plane.

Several surfaces

The following two functions lead to identical results:
function { abs(x)-1 }
function { sqgrt(x*x)-1 }

You can see that there are two planes now. The reason is that both formulas have the same two solutions
(where the function value is 0), namely-1 andx=1.

We can now mix all these elements in different combinations, the results always consist of plane surfaces:
function { abs(x)-1+y }

function { abs(x)+abs(y)+abs(z)-2 }
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<

Figure 3.33: Isosurface sample (functipabs(x)-1}, open)

Figure 3.34: Isosurface sample (combined linear functions)

Figure 3.35: Isosurface sample (combined linear functions)
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Non-linear functions

Curved surfaces of many different kinds can be achieved with non-linear functions.

function { pow(x,2) + y }

(x,

Figure 3.36: Isosurface sample (non-linear function)

You can see the parabolic shape caused by the square function.
To get a cylindrical surface we can use the following function.
function { sqrt (pow(x,2) + pow(z,2)) - 1 }

In 2 dimensions it describes a circle, since it is constant in the 3rd dimension, we get a cylinder:

Figure 3.37: Isosurface sample (cylinder function)

Itis of course not difficult to change this into a cone, we just need to add a linear component in y-direction:
function { sqrt (pow(x,2) + pow(z,2)) + y }

And we of course can also make a sphere:
function { sqrt (pow(x,2) + pow(y,2) + pow(z,2)) - 2 }

The2 specifies the radius here.

Specifying functions

As we have seen, the functions used to define the isosurface are writterrimt¢heon {. ..} block.
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Figure 3.38: Isosurface sample (cone function)

Figure 3.39: Isosurface sample (sphere function)

Allowed are:

User defined functions (like equations). All float expressions and operators (see section “User-Defined
Functions”) which are legal in POV-Ray, can be used.
With the equation of a sphere“2+y~2+z°2 = Threshold” we get:

isosurface {
function {pow(x,2) + pow(y,2) + pow(z,2)}
threshold Threshold

}

Functions can be declared first (see section “Declaring Functions”) and then used in the isosurface.

#declare Sphere = function {pow(x,2) + pow(y,2) + pow(z,2)}
isosurface {

function { Sphere(x,y,z) }

threshold Threshold

}

By default a function takes three parameters (X,y,z) and you do not have to explicitly specify the parameter
names when declaring it.

Whenusingthe identifier, the parametemsustbe specified.

On the other hand, if you need more or less than three parameters when declaring a function, you also have
to explicitly specify the parameter names.
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#declare Sphere = function(x,y,z,Radius) ({
pow(x,2) + pow(y,2) + pow(z,2) - pow(Radius,?2)
}
isosurface {
function { Sphere(x,y,z,1) }

Internal functions

There are a lot of internal functions available in POV-Ray. For example a sphere could also be generated
with function { f_sphere(x, y, z, 2) } These functions are declared in theictions.inc include file.

Most of them are more complicated and it is usually faster to use them instead of a hand coded equivalent.
See the complete list for details.

The following makes a torus just like POV-Ray'’s torus object:

#include "functions.inc"
isosurface {
function { f_torus(x, vy, z, 1.6, 0.4) }

contained_by { box { -2, 2 } }
}

P

| <

Figure 3.40: Isosurface sample (torus function)

The 4th and 5th parameter are the major and minor radius, just like the corresponding values:insfie
object.

The parameters x, y and z are required, because it is a declared function. You can also declare functions
yourself like it is explained in the reference section.

Combining isosurface functions

We can also simulate some Constructive Solid Geometry with isosurface functions. If you do not know
about CSG we suggest you have a look at “What is CSG?” or the corresponding part of the reference
section first.

We will take two functions: a cylinder and a rotated box:

#declare fn_A = function { sqgrt (pow(y,2)

+ pow(z,2)) - 0.8 }
#declare fn_B = function { abs(x)+abs(y)-1 }
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If we combine them the following way, we get a “merge”:

function { min(fn-A(x, y, z), fnB(x, y, z)) }

&

Figure 3.41: Isosurface sample (merge)

An “intersection” can be obtained by usingx () instead ofnin ():

function { max(fn-A(x, y, z), fnB(x, y, z)) }

Figure 3.42: Isosurface sample (intersection)

Of course also “difference” is possible, we just have to add a minus (-) before the second function:
function { max(fnA(x, y, z), -fnB(x, y, z)) }

Apart from basic CSG you can also obtain smooth transits between the different surfaces (like with the blob
object)

#declare Blob_threshold=0.01;

isosurface {
function {
(1+Blob_threshold)
-pow (Blob_threshold, fn_A(x,y,z)
-pow (Blob_threshold, fn_B(x,y,z)
}
max_gradient 4
contained_by { box { -2, 2 } }
}
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&

Figure 3.43: Isosurface sample (difference)

&

Figure 3.44: Isosurface sample (blob)

Therlob_threshold value influences the smoothness of the transit between the shapes. a lower value leads
to sharper edges.

The function for a negative blob looks like:

function{fn_A(x,y,z) + pow(Blob_threshold, (Fn_B(x,y,z) + Strength))}

Noise and pigment functions

Some of the internal functions have a random or noise-like structure

Together with the pigment functions they are one of the most powerful tools for designing isosurfaces.
We can add real surface displacement to the objects rather than only normal perturbation known from the
normal} statement.

The relevant internal functions are:

* f noise3d(x,vy,z)
uses the noise generator specifiedlisbal _settings{} and generates structures like the bozo pattern.

* f noise_generator(x, y, z, noise_generator)
generates noise with a specified noise generator.

¢ f ridgedmf(x, y, z, H, Lacunarity, Octaves, Offset, Gain, noise_generator)
generates a ridged multifractal pattern.
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e f ridge(x, y, z, Lambda, Octaves, Omega, Offset, Ridge, noise_generator)
generates another noise with ridges.

e f heteromf(x, y, z, H, Lacunarity, Octaves, Offset, T, noise_generator)
generates heterogenic multifractal noise.

Using pure noise3d as a function results in the following picture:

function { fonoise3d(x, y, z)-0.5 }
“

bt

N

-

1
-

Figure 3.45: Isosurface sample (noise3d)
Note: the-0.5 is only there to make it match to the used threshold value of G, these3d function returns
values between 0 and 1.

With this and the other functions you can generate objects similar to heightfields, having the advantage that
a high resolution can be achieved without high memory requirements.

function { x + f_noise3d(0, y, z) }

Figure 3.46: Isosurface sample (noise3d 'heightfield’)

The noise function can of course also be subtracted which results in an 'inverted’ version:

function { x - fonoise3d(0, y, z) }

In the last two pictures we added the noise function to a plane function. The x-parameter was set to 0 so the
noise function is constant in x-direction. This way we achieve the typical heightfield structure.

Of course we can also add noise to any other function. If the noise function is very strong this can result in
several separated surfaces.

function { f_sphere(x, y, z, 1.2) - fonoise3d(x, y, z) }
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Figure 3.47: Isosurface sample (noise3d 'heightfield’ inverted)

Figure 3.48: Isosurface sample (noise3d on sphere)

This is a noise function applied to a sphere surface, we can influence the intensity of the noise by multiplying
it with a factor and change the scale by multiplying the coordinate parameters:

function { f_sphere(x, y, z, 1.6) - fnoise3d(x * 5, y * 5, z * 5) * 0.5 }

Figure 3.49: Isosurface sample (noise3d on sphere scaled)

As alternative to noise functions we can also use any pigment in a function:

#declare fn_Pigm=function {
pigment {
agate
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color_map {
[0 color rgb 0]
[1 color rgb 1]
}
}
}

This function is a vector function returning a (color) vector.For use in isosurface functionsnisype
declared first. When using the identifier, you have to specify which component of the color vector should
be used. To do this, the dot notation is usediction (x, v, z) . red.

A color vector has five components. Supported dot types to access these components are:
* F()x—F()u—F().red
— to get the red value of the color vector
F()y — F()v —F().green

— to get the green value of the color vector
F().z—F()blue

— to get the blue value of the color vector

F().filter —F().t

— to get the filter value of the color vector
* F().transmit
— to get the transmit value of the color vector
* F()gray
— to get the gray value of the color vector
— gray value = Red*29.7% + Green*58.9% + Blue*11.4%
* F()hf
— to get the heighfield value of the color vector
— hf value = (Red + Green/255)*0.996093
— the .hf operator is experimental and will generate a warning.

function { f_sphere(x, y, z, 1.6)-fnPigm(x/2, y/2, z/2).gray*0.5 }

Figure 3.50: Isosurface sample (pigment function)
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There are quite a lot of things possible with pigment functions, but you probably have recognized that this
renders quite slow.

Conditional directives and loops

Conditional directives are allowed in functions:

#declare Rough = yes;
#include "functions.inc"
isosurface {
function { y #if (Rough=1)-f_noise3d(x/0.5,y/0.3,2/0.4)*0.8 #end }

}
Loops can also be used in functions:

#include "functions.inc"

#declare Thr = 1/1000;

#declare Ang = radians(45);

#declare Offset = 1.5;

#declare Scale = 1.2;

#declare TrSph = function { f_sphere(x-Offset,y,z,0.7*Scale) }

function {

(1-Thr)
#declare A = 0;
#while (A<8)

-pow (Thr, TrSph(x*cos(A*Ang) + y*sin(A*Ang),
y*cos (A*Ang) -x*sin(A*Ang), z) )
#declare A=A+1;
#end
}

Note: The loops and conditionals are evaluated at parse time, not at render time.

Transformations on functions

Transforming an isosurface object is done like transforming any POV-Ray object. Simply use the object
modifiers (scale, translate, rotate, ...).

However, when you want to transform functions within the contaibgdbject, you have to substitute
parameters in the functions.

The resultseeninverted to what you would normally expect. Here is an explanation:

Take a Sphere(x,y,z). We know it sits at the origin because x=0. When we want it at x=2 (translating 2 units
to the right) we need to write the second equation in the same form; x-2=0

Now that both equations equal 0, we can replace parameter x with x-2

So our Sphere(x-2, y,z) moves two units to thght.

Let’s scale our Sphere 0.5 in the y direction. Default size is y=1 (one unit). We want y=0.5.

To get this equation in the same form as the first one, we have to multiply both sides by two. y*2 = 0.5*2,
which gives y*2=1

Now we can replace the y parameter in our sphere: Sphere(x, y*2, z). This squishes the y-size of the sphere
by half.

Well, this is the general idea of substitutions.
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Here is an overview of some useful substitutions:
Using a declared object P(x,y,z)

Scale
scale x : replacex” with “ x/scale” (idem other parameters)

scale x*2  gives P(x/2,y,2)

Scale Infinitely
scale x infinitely : replacex” with " 0” (idem other parameters)

scale y infinitely gives P(x,0,z)

Translate
translate x : replacex” with ” x - translation” (idem other parameters)

translate z*3 gives P(x,y,2-3)

Shear

shear in XY-plane : replace” with ” x + y*tan(radians(Angle))” (idem other parameters)
shear 45 degrees left gives P (xty*tan(radians(45)), vy, z)

Rotate

Note: these rotation substitutions work like normal POV-rotations: they already compensate for the inverse
working

rotate around X

nn

:replace ¥" with " z*sin(radians (Angle)) + y*cos(radians (Angle))

:replace Z anh"z*cos(radians(Angle)) - y*sin(radians (Angle))

”

rotate around Y

nn

: replace %" with " x*cos (radians (Angle)) - z*sin(radians (Angle)

: replace 2" with " x*sin (radians (Angle)) + z*cos(radians(Angle))’

”

rotate around Z

: replace %" with " x*cos (radians (Angle)) + y*sin(radians(Angle))

: replace V" with " -x*sin (radians (Angle)) + y*cos(radians(Angle))

”

rotate z*75  gives:
P (x*cos(radians(75)) + y*sin(radians(75)),
-x*sin(radians(75)) + y*cos(radians(75)), z)

Flip
flip X - Y : replace "x” with " y” and replace " with " -x

flip Y - Z : replace 'y with ” z” and replace 2" with " -y”
flip X - Z : replace %" with ” -z” and replace %" with " x”
flip x and y gives P(y, -%X, z)

Twist
twist N turns/unit around

replace ¥ with " z*sin (x*2*pi*N) + y*cos (x*2%pi*N)”

: replace 2" with " zxcos (x*2*pi*N) - y*sin(x*2*pi*N)”
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Improving Isosurface Speed

To optimize the approximation of the isosurface and to get maximum rendering speed it is important to
adapt certain values;

accuracy

The accuracy value influences how accurate the surface geometry is calculated. Lower values lead to a more
precise, but slower result. The default valueoofo1 is fairly low. We used this value in all the previous
samples, but often you can raise this quite a lot and thereby make things faster.

max_gradient

For finding the actual surface it is important for POV-Ray to know the maximum gradient of the function,
meaning how fast the function value changes. We can specify a value withusthgadient keyword.

Lower maxgradient values lead to faster rendering, but if the specified value is below the actual maximum
gradient of the function, there can be holes or other artefacts in the surface.

For the same reason functions with infinite gradient should not be used. This applies for pigment functions
with brick or checker pattern for example. You should also be careful when ssirgt () in isosurface
functions because of this.

If the real maximum gradient differs too much from the specified value POV-Ray prints a warning together
with the found maximum gradient. It is usually sufficient to use this number fotatheradient parameter
to get fast and correct results.

POV-Ray can also dynamically change the&_gradient when you specifievaluate with 3 parameters
the isosurface definition. Concerning the details on this and other things see the evaluate in the reference
section.

contained_by

Make sure youtontained_by 'object’ fits as tightly as possible. An oversized container can sky-rocket the
render time.

When the container has a lot of empty space around the actual isosurface, POV-Ray has to do a lot of
superfluous sampling: especially with complex functions this can become very time consuming. On top of
this, themax_gradient needed to get a proper surface will also increase rapidly (almost proportional to the
oversizel).

You could use a transparent copy of the container (using exactly the same transformations) to check how it
fits. Getting thenin_extent andmax_extent Of theisosurface is not useful because it only gives the extent

of the container and not of the actual isosurface.

3.3.4 Poly Object

The polynomial object (and its "shortcut” versionsibic, quartic andquadric) of POV-Ray is one of

the most complex and mathematical primitives of the program. One could think that it is seldom used and
more or less obsolete, but we have to remember that for example the torus primitive is just a shortcut for the
equivalentjuartic, which is just a shortcut for the equivalentiy object. Polys are, however, seldom used

in scenes due to the fact that they are so difficult to define and it is far from trivial to get the desired shape
with just a polynomial equation. It is mostly used by the most mathematically oriented POV-Ray users.

This tutorial explains the process of making a polynomial object in POV-Ray.

Note:Since version 3.5, POV-Ray includes the newsurface object which makes the polynomial object

more or less obsolete. The isosurface is more versatile (you can specify any mathematical function, not just
polynomials), easier to use. You can write the function as is, without needing to put values in a gigantic
vector. Isosurfaces often render considerably faster than equivalent polys.
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However, the most mathematically oriented still like polys because isosurfaces are calculated just by ap-
proximating the right value, while the poly is calculated in a mathematically exact way. Usually isosurfaces
are more than good enough for most applications, though.

Note: at maximum a 15th degree polynomial can be represented with the poly object. If a higher degree
polynomial or other non-polynomial function has to be represented, then it is necessary to use the isosurface
object.

Creating the polynomial function

The first step is to create the polynomial function to be represented. You will need some (high-school level)
mathematical knowledge for this.

1) Let’s start with an easy example: A sphere.

The sphere function is:

VXY +Z2=r

Equation 3.1: sphere function

Now we have to convert this to polynomial form:

X2+ y2 +Z2-r=0
Equation 3.2: sphere polynomial

We will need a polynomial of the 2nd degree to represent this.
2) A more elaborated example:

Let's take the function:

2xy?

Z=
X2 4y

Equation 3.3: function

Converting this to polynomial form we get:

Although the highest power is 4 we will need a 5th order polynomial to represent this function (because we
cannot represent'y with a 4th order polynomial).

3) And since we talked about the torus, let’s also take it as an example.
A torus can be represented with the function:

where § is the major radius ang is the minor radius.

Now, this is tougher to convert to polynomial form, but finally we get:

A 4th order polynomial is enough to represent this.
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X2z+y'z—2xy? =0

Equation 3.4: polynomial

\/(\/Mrl)2+y2r2

Equation 3.5: torus function

Note: not every function can be represented in polynomial form. Only functions that use addition (and
substraction), multiplication (and division) and scalar powers (including rational powers, eg. the square
root) can be represented. Also, the poly primitive supports only polynomials of the 7th degree at max.

Converting a function to polynomial form may be a very laborious task for certain functions. Some mathe-
matical programs are very helpful in this matter.

Writing the polynomial vector

Now that we have the function in polynomial form, we have to write it in POV-Ray syntax. The syntax is
specified in the in the chapters "Poly, Cubic and Quartic” and "Quadric” of the SDL section. There is also
a table in this chapter which we will be using to make the polynomial vector. It is easier to have this table
printed on paper.

Note: Itis also possible to make a little program with your favorite programming language which will print
the poly vector from the polynomial function, but making a program like this is up to you.

1) Let’s start with the easy one, ie. the sphere.

Since the sphere can be represented with a polynomial of 2nd degree, we look at the row titled "2nd” in the
table. We see that it has 10 items, ie. we need a vector of size 10. Each item of the vector will be the factor
of the term listed in the table.

The polynomial was:
Writing the poly in this way we get:

#declare Radius=1;
poly
{ 2/
<1,0,0,0,1,
0,0,1,0,-Radius*Radius>
}

Put each group of factors (separated with lines in the table) in their own lines.

In the table we see that the first item is the factor frwhich is 1 in the function. The next item is xy.
Since it is not in the function, its factor is 0. Likewise the next item, which is xz. And so on. The last item
is the scalar term, which is in this cas@.-r

X4+ 23 + 232 — 2(13+ 13+ Y + 222+ 2(r3 — 13+ 2 — 2(r2 +13)2 4+ (12 —13)> =0

Equation 3.6: torus polynomial
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X+ +Z2-r=0

Equation 3.7: sphere polynomial

If we make a proper scene and render it, we get:

camera { location y*4-z*5 look_at 0 angle 35 }
light_source { <100,200,-50> 1 }
background { rgb <0,.25,.5> }

#declare Radius=1;
poly
{2,
<1,0,0,0,1,
0,0,1,0,-Radius*Radius>
pigment { rgb <1,.7,.3> } finish { specular .5 }
}

Figure 3.51: Sphere polynomial

Note: there is a shortcut for 2nd degree polynomials: Fheiric primitive. Using a shortcut version,
whenever possible, can lead to faster renderings. We can write the sphere code described above in the

following way:

quadric

{ <1,1,1>, <0,0,0>, <0,0,0>, -Radius*Radius
pigment { rgb <1,.7,.3> } finish { specular .5 }

}

2) Now lets try the second one. We do it similarly, but this time we need to look at the row titled "5th” in
the table.

The polynomial was:
Xz+y'z—2xy’ =0
Equation 3.8: 5th order polynomial

Writing the poly primitive we get:

poly
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}

With the proper scene we get:

camera { location <8,20,-10>*.7 look_at x*.0l1 angle 35 }
light_source { <100,200,20> 1 }
background { rgb <0,.25,.5> }

poly

0,0,0,0,0
0,0,0,0,0
0,0,0,0,0,
0,0,0,1,0
0,0,0,0,0

clipped_by { box { <-4,-4,-1><4,4,1> } }

bounded_by { clipped_by }

pigment { rgb <1,.7,.3> } finish { specular .5 }

rotate <0,90,-90>

3) And finally the torus:

The polynomial was:

Figure 3.52: 5th order polynomial example
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X428+ 27— 2(r5 + 1)+ Y 222 4 2(rF — 1)y + L — 2(r2 4+ 15) 2 4 (12 —15)? =0

Equation 3.9: torus polynomial

And we get the proper 4th degree poly primitive:

camera { location y*4-z*5 look_at 0 angle 35 }
light_source { <100,200,-50> 1 }
background { rgb <0,.25,.5> }

#declare rl=1;
#declare r2=.5;
poly

{4,
1,0,0,0,2,
0,0,2,0,-2*(rl*rl+r2*r2),
0,0,0,0,
0,0,0,0
1,0,0,2,
2% (rl*rl

rVr
’

rVr

~

0
, 0
OI
-r2*r2),0,0,0,0,
1,0,-2%(r1*rl+r2*r2),0,pow(rl, 4)+pow(r2,4)-2*rl*rl*r2*r2>
pigment { rgb <1,.7,.3> } finish { specular .5 }
}

When rendered we get:

Figure 3.53: Torus polynomial

There is a shortcut for 4th order polynomials: Thertic primitive. We can write the torus like this:

quartic

{ <1,0,0,0,2,
0,0,2,0,-2*(rl*rl+r2*r2),
0,0,0,0,0,
0,0,0,0,0,
1,0,0,2,0,
2* (rl*rl-r2*r2),0,0,0,0,

1,0,-2%(r1*rl+r2*r2),0,pow(rl, 4) tpow(r2,4)-2*rl*rl*r2*r2>
pigment { rgb <1,.7,.3> } finish { specular .5 }
}
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3.3.5 Superquadric Ellipsoid Object

Sometimes we want to make an object that does not have perfectly sharp edges like a box does. Then, the
superquadric ellipsoid shape made by thgerellipsoid is a useful object. It is described by the simple
syntax:

superellipsoid { <Value_E, Value_N >}

WhereValue E andValueN are float values greater than zero and less than or equal to one. Let’'s make a
superellipsoid and experiment with the values/afue E andValueN to see what kind of shapes we can
make. We create a file calledupellps.pov and edit it as follows:

#include "colors.inc"
camera {
location <10, 5, -20>
look_at 0
angle 15

}
background { color rgb <.5, .5, .5> }
light_source { <10, 50, -100> White }

The addition of a gray background makes it a little easier to see our object. We now type:

superellipsoid { <.25, .25>
pigment { Red }
}

We save the file and trace it at 200x150to see the shape. It will look like a box, but the edges will be
rounded off. Now let’s experiment with different valuesvalue E and Value N. For the next trace, try.1,
0.2>. The shape now looks like a cylinder, but the top edges are rounded. Newdtty 1>. This shape

is an odd one! We do not know exactly what to call it, but it is interesting. Finally, let'scry1>. Well,
this is more familiar... a sphere!

There are a couple of facts about superellipsoids we should know. First, we should not use a value of O
for either Value E nor ValueN. This will cause POV-Ray to incorrectly make a black box instead of our
desired shape. Second, very small valuegadfie E and ValueN may yield strange results so they should

be avoided. Finally, the Sturmian root solver will not work with superellipsoids.

Superellipsoids are finite objects so they respond to auto-bounding and can be used in CSG.

Now let's use the superellipsoid to make something that would be useful in a scene. We will make a tiled
floor and place a couple of superellipsoid objects hovering over it. We can start with the file we have already
made.

We rename ittotiles.pov and edit it so that it reads as follows:

#include "colors.inc"
#include "textures.inc"
camera {
location <10, 5, -20>
look_at 0
angle 15
}
background { color rgb <.5, .5, .5> }
light_source{ <10, 50, -100> White }

Note: we have adde@include "textures.inc" SO we can use pre-defined textures. Now we want to define
the superellipsoid which will be our tile.

#declare Tile = superellipsoid { <0.5, 0.1>
scale <1, .05, 1>
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}

Superellipsoids are roughly 2*2*2 units unless we scale them otherwise. If we wish to lay a bunch of our
tiles side by side, they will have to be offset from each other so they do not overlap. We should select an
offset value that is slightly more than 2 so that we have some space between the tiles to fill with grout. So
we now add this:

#declare Offset = 2.1;

We now want to lay down a row of tiles. Each tile will be offset from the original by an ever-increasing
amount in both the +z and -z directions. We refer to our offset and multiply by the tile’s rank to determine
the position of each tile in the row. We also union these tiles into a single object galldidle this:

#declare Row = union {

object { Tile }

object { Tile translate z*Offset }
object { Tile translate z*Offset*2 }
object { Tile translate z*0Offset*3 }
object { Tile translate z*Offset*4 }
object { Tile translate z*Offset*5 }
object { Tile translate z*Offset*6 }
object { Tile translate z*Offset*7 }
object { Tile translate z*Offset*8 }
object { Tile translate z*Offset*9 }
object { Tile translate z*Offset*10 }
object { Tile translate -z*Offset }
object { Tile translate -z*0Offset*2 }
object { Tile translate -z*Offset*3 }
object { Tile translate -z*Offset*4 }
object { Tile translate -z*0ffset*5 }
object { Tile translate -z*Offset*6 }

}

This gives us a single row of 17 tiles, more than enough to fill the screen. Now we must make copies of the
rRow and translate them, again by the offset value, in both the +x and -x directions in ever increasing amounts
in the same manner.

Row translate -x*Offset*6
Row translate -x*Offset*7

object
object

object { Row }
object { Row translate x*Offset }
object { Row translate x*Offset*2 }
object { Row translate x*Offset*3 }
object { Row translate x*Offset*4 }
object { Row translate x*Offset*5 }
object { Row translate x*Offset*6 }
object { Row translate x*Offset*7 }
object { Row translate -x*Offset }
object { Row translate -x*Offset*2 }
object { Row translate -x*0ffset*3 }
object { Row translate -x*Offset*4 }
object { Row translate -x*Offset*5 }
{ }
{ }

Finally, our tiles are complete. But we need a texture for them. To do this we union all efithéogether
and apply amhite Marble pigment and a somewhat shiny reflective surface to it:

union{
object { Row }
object { Row translate x*Offset }
object { Row translate x*Offset*2 }
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object { Row translate x*Offset*3 }
object { Row translate x*Offset*4 }
object { Row translate x*Offset*5 }
object { Row translate x*Offset*6 }
object { Row translate x*Offset*7 }
object { Row translate -x*0Offset }

object { Row translate -x*Offset*2 }
object { Row translate -x*Offset*3 }
object { Row translate -x*Offset*4d }
object { Row translate -x*Offset*5 }
object { Row translate -x*Offset*6 }
object { Row translate -x*Offset*7 }

pigment { White_Marble }
finish { phong 1 phong_size 50 reflection .35 }
}

We now need to add the grout. This can simply be a white plane. We have stepped up the ambient here a
little so it looks whiter.

plane {
y, 0 //this is the grout
pigment { color White }
finish { ambient .4 diffuse .7 }
}

To complete our scene, let’s add five different superellipsoids, each a different color, so that they hover over
our tiles and are reflected in them.

superellipsoid {
<0.1, 1>
pigment { Red }
translate <5, 3, 0>
scale .45

}

superellipsoid {
<1, 0.25>
pigment { Blue }
translate <-5, 3, 0>
scale .45

}

superellipsoid {
<0.2, 0.6>
pigment { Green }
translate <0, 3, 5>
scale .45

}

superellipsoid {
<0.25, 0.25>
pigment { Yellow }
translate <0, 3, -5>
scale .45

}

superellipsoid {
<1, 1>
pigment { Pink }
translate y*3
scale .45
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Figure 3.54: Some superellipsoids hovering above a tiled floor.

We trace the scene at 320x200to see the result. If we are happy with that, we do a final trace at 640x480
+A0.2.

3.4 Advanced Texture Options

The extremely powerful texturing ability is one thing that really sets POV-Ray apart from other raytracers.
So far we have not really tried anything too complex but by now we should be comfortable enough with the
program'’s syntax to try some of the more advanced texture options.

Obviously, we cannot try them all. It would take a tutorial a lot more pages to use every texturing option
available in POV-Ray. For this limited tutorial, we will content ourselves to just trying a few of them to give
an idea of how textures are created. With a little practice, we will soon be creating beautiful textures of our
own.

Note: early versions of POV-Ray made a distinction between pigment and normal patterns, i. e. patterns
that could be used inside @aormal or pigment statement. Since POV-Ray 3.0 this restriction was removed
so that all patterns listed in section "Patterns” can be used as a pigment or normal pattern.

3.4.1 Pigments

Every surface must have a color. In POV-Ray this color is calleth@ent. It does not have to be a single

color. It can be a color pattern, a color list or even an image map. Pigments can also be layered one on top
of the next so long as the uppermost layers are at least partially transparent so the ones beneath can show
through. Let’s play around with some of these kinds of pigments.

We create a file calle@kxdemo.pov and edit it as follows:

#include "colors.inc"
camera {
location <1, 1, -7>
look_at 0
angle 36
}
light_source { <1000, 1000, -1000> White }
plane {
y, -1.5
pigment { checker Green, White }

}
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sphere {
<0,0,0>, 1
pigment { Red }
}

Giving this file a quick test render at 200x150we see that it is a simple red sphere against a green and
white checkered plane. We will be using the sphere for our textures.

Using Color List Pigments

Before we begin we should note that we have already made one kind of pigment, the color list pigment. In
the previous example we have used a checkered pattern on our plane. There are three other kinds of color
list pigmentsjrick, hexagon and theobject pattern. Let’s quickly try each of these. First, we change the
plane’s pigment as follows:

pigment { hexagon Green, White, Yellow }

Rendering this we see a three-color hexagonal pattern. Note that this pattern requires three colors. Now we
change the pigment to...

pigment { brick Gray75, Red rotate -90*x scale .25 }

Looking at the resulting image we see that the plane now has a brick pattern. We note that we had to rotate
the pattern to make it appear correctly on the flat plane. This pattern normally is meant to be used on vertical
surfaces. We also had to scale the pattern down a bit so we could see it more easily. We can play around
with these color list pigments, change the colors, etc. until we get a floor that we like.

Using Pigment and Patterns

Let’s begin texturing our sphere by using a pattern and a color map consisting of three colors. We replace
the pigment block with the following.

pigment {
gradient x
color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]
}
}

Rendering this we see that thexdient pattern gives us an interesting pattern of vertical stripes. We change
the gradient direction to y. The stripes are horizontal now. We change the gradient direction to z. The stripes
are now more like concentric rings. This is because the gradient direction is directly away from the camera.
We change the direction back to x and add the following to the pigment block.

pigment {
gradient x
color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]

}
rotate -45*%z // <- add this line
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The vertical bars are now slanted at a 45 degree angle. All patterns can be rotated, scaled and translated
in this manner. Let's now try some different types of patterns. One at a time, we substitute the following
keywords forgradient x and render to see the resuitizo, marble, agate, granite, leopard, spotted and

wood (if we like we can test all patterns listed in section "Patterns”).

Rendering these we see that each results in a slightly different pattern. But to get really good results each
type of pattern requires the use of some pattern modifiers.

Using Pattern Modifiers

Let’s take a look at some pattern modifiers. First, we change the pattern type to bozo. Then we add the
following change.

pigment {
bozo
frequency 3 // <- add this line
color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]
}
rotate -45*z

}

The frequency modifier determines the number of times the color map repeats itself per unit of size. This
change makes thezo pattern we saw earlier have many more bands in it. Now we change the pattern type
tomarble. When we rendered this earlier, we saw a banded pattern simiasdoent vy that really did not

look much like marble at all. This is because marble really is a kind of gradient and it needs another pattern
modifier to look like marble. This modifier is callethrbulence. We change the linefrequency 3 to
turbulence 1 and render again. That's better! Now let's gutquency 3 back in right after the turbulence

and take another look. Even more interesting!

But wait, it gets better! Turbulence itself has some modifiers of its own. We can adjust the turbulence
several ways. First, the float that follows therbulence keyword can be any value with higher values
giving us more turbulence. Second, we can use the keywekdg, lambda andoctaves to change the
turbulence parameters.

Let’s try this now:

pigment {

marble

turbulence 0.5

lambda 1.5

omega 0.8

octaves 5

frequency 3

color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]

}

rotate 45*z

}

Rendering this we see that the turbulence has changed and the pattern looks different. We play around with
the numerical values of turbulence, lambda, omega and octaves to see what they do.
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Using Transparent Pigments and Layered Textures

Pigments are described by numerical values that give the rgb value of the color to be usediike
rgb<1,0,0> giving us a red color). But this syntax will give us more than just the rgb values. We can
specify filtering transparency by changing it as followslor rgbf<1,0,0,1>. Thef stands forfilter,
POV-Ray’s word for filtered transparency. A value of one means that the color is completely transparent,
but still filters the light according to what the pigment is. In this case, the color will be a transparent red,
like red cellophane.

There is another kind of transparency in POV-Ray. It is caffadsmittanceor non-filtering transparency

(the keyword istransmit; see alsorgbt). It is different fromtilter in that it does not filter the light
according to the pigment color. It instead allows all the light to pass through unchanged. It can be specified
like this: rgbt <1,0,0,1>.

Let's use some transparent pigments to create another kind of texture, the layered texture. Returning to our
previous example, declare the following texture.

#declare LandArea = texture {
pigment {

agate

turbulence 1

lambda 1.5

omega .8

octaves 8

color_map {
[0.00 color rgb
[0.33 color rgb
[0.86 color rgb
[1.00 color rgb

.25, .15>]
, .5, .4>]
.3, 1]
.25, .15>]
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}
This texture will be the land area. Now let's make the oceans by declaring the following.

#declare OceanArea = texture {
pigment {
bozo
turbulence .5
lambda 2
color_map {
[0.00, 0.33 color rgb <0, 0, 1>
color rgb <0, 0, 1>]
[0.33, 0.66 color rgbf <1, 1, 1, 1>
color rgbf <1, 1, 1, 1>]
[0.66, 1.00 color rgb <0, 0, 1>
color rgb <0, 0, 1>]

}

Note: how the ocean is the opaque blue area and the land is the clear area which will allow the underlying
texture to show through.

Now, let's declare one more texture to simulate an atmosphere with swirling clouds.

#declare CloudArea = texture {
pigment {
agate
turbulence 1
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lambda 2

frequency 2

color_map {
[0.0 color rgbf <1, 1, 1, 1>]
[0.5 color rgbf <1, 1, 1, .35>]
[1.0 color rgbf <1, 1, 1, 1>]

}
Now apply all of these to our sphere.

sphere {
<0,0,0>, 1
texture { LandArea }
texture { OceanArea }
texture { CloudArea }

}

We render this and have a pretty good rendition of a little planetoid. But it could be better. We do not

particularly like the appearance of the clouds. There is a way they could be done that would be much more
realistic.

Using Pigment Maps

Pigments may be blended together in the same way as the colors in a color map using the same pattern
keywords and @aigment map. Let’s just give it a try.

We add the following declarations, making sure they appear before the other declarations in the file.

#declare Cloudsl = pigment {
bozo
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]

}
#declare Clouds2 = pigment {

agate

turbulence 1

color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]
}

}
#declare Clouds3 = pigment {

marble

turbulence 1

color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]

}
#declare Cloudsd = pigment {
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granite

turbulence 1

color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]

}

}

Now we use these declared pigments in our cloud layer on our planetoid. We replace the declared cloud
layer with.

#declare CloudArea = texture {
pigment {

gradient y

pigment_map {
[0.00 Cloudsl]
[0.25 Clouds?]
[0.50 Clouds3]
[0.75 Clouds4]
[1.00 Cloudsl]

}

We render this and see a remarkable pattern that looks very much like weather patterns on the planet earth.
They are separated into bands, simulating the different weather types found at different latitudes.

3.4.2 Normals

Objects in POV-Ray have very smooth surfaces. This is not very realistic so there are several ways to
disturb the smoothness of an object by perturbing the surface normal. The surface normal is the vector that
is perpendicular to the angle of the surface. By changing this normal the surface can be made to appear
bumpy, wrinkled or any of the many patterns available. Let’s try a couple of them.

Using Basic Normal Modifiers

We comment out the planetoid sphere for now and, at the bottom of the file, create a new sphere with a
simple, single color texture.

sphere {
<0,0,0>, 1
pigment { Gray75 }
normal { bumps 1 scale .2 }

}

Here we have addedmarmal block in addition to the pigment block (note that these do not have to be
included in a texture block unless they need to be transformed together or need to be part of a layered
texture). We render this to see what it looks like. Now, one at a time, we substitute for the keywesd

the following keywordsdents, wrinkles, ripples andwaves (Wwe can also use any of the patterns listed in
"Patterns”). We render each to see what they look like. We play around with the float value that follows the
keyword. We also experiment with the scale value.

For added interest, we change the plane texture to a single color with a normal as follows.

plane {
y, -1.5
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pigment { color rgb <.65, .45, .35> }
normal { dents .75 scale .25 }

}

Blending Normals

Normals can be layered similar to pigments but the results can be unexpected. Let's try that now by editing
the sphere as follows.

sphere {
<0,0,0>, 1
pigment { Gray75 }
normal { radial frequency 10 }
normal { gradient y scale .2 }

}

As we can see, the resulting pattern is neither a radial nor a gradient. Itis instead the result of first calculating
aradial pattern and then calculating a gradient pattern. The results are simply additive. This can be difficult
to control so POV-Ray gives the user other ways to blend normals.

One way is to use normal maps. A normal map works the same way as the pigment map we used earlier.
Let's change our sphere texture as follows.

sphere {
<0,0,0>, 1
pigment { Gray75 }
normal {
gradient y
frequency 3
turbulence .5
normal_map {
[0.00 granite]
[0.25 spotted turbulence .35]
[0.50 marble turbulence .5]
[0.75 bozo turbulence .25]
[1.00 granite]

}

Rendering this we see that the sphere now has a very irregular bumpy surface. The gradient pattern type
separates the normals into bands but they are turbulated, giving the surface a chaotic appearance. But this
gives us an idea.

Suppose we use the same pattern for a normal map that we used to create the oceans on our planetoid and
applied it to the land areas. Does it follow that if we use the same pattern and modifiers on a sphere the
same size that the shape of the pattern would be the same? Would not that make the land areas bumpy while
leaving the oceans smooth? Let's try it. First, let's render the two spheres side-by-side so we can see if the
pattern is indeed the same. We un-comment the planetoid sphere and make the following changes.

sphere {
<0,0,0>, 1
texture { LandArea }
texture { OceanArea }
//texture { CloudArea } // <-comment this out
translate -x // <= add this transformation

}

Now we change the gray sphere as follows.
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sphere {
<0,0,0>, 1
pigment { Gray75 }
normal {
bozo
turbulence .5
lambda 2
normal_map {
[0.4 dents .15 scale .01]
[0.6 agate turbulence 1]
[1.0 dents .15 scale .01]
}
}
translate x // <- add this transformation

}

We render this to see if the pattern is the same. We see that indeed it is. So let's comment out the gray
sphere and add thermal block it contains to the land area texture of our planetoid. We remove the
transformations so that the planetoid is centered in the scene again.

#declare LandArea = texture {
pigment {

agate

turbulence 1

lambda 1.5

omega .8

octaves 8

color_map {
[0.00 color rgb
[0.33 color rgb
[0.86 color rgb
[1.00 color rgb

.25, .15>]
, .5, .4>]
L1>]
.25, .15>]
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}
}
normal {
bozo
turbulence .5
lambda 2
normal_map {
[0.4 dents .15 scale .01]
[0.6 agate turbulence 1
[1.0 dents .15 scale .01]

}

Looking at the resulting image we see that indeed our idea works! The land areas are bumpy while the
oceans are smooth. We add the cloud layer back in and our planetoid is complete.

There is much more that we did not cover here due to space constraints. On our own, we should take the
time to explore slope maps, average and bump maps.

3.4.3 Finishes

The final part of a POV-Ray texture is thenish. It controls the properties of the surface of an object. It can
make it shiny and reflective, or dull and flat. It can also specify what happens to light that passes through
transparent pigments, what happens to light that is scattered by less-than-perfectly-smooth surfaces and
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what happens to light that is reflected by surfaces with thin-film interference properties. There are twelve
different properties available in POV-Ray to specify the finish of a given object. These are controlled by
the following keywordsambient, diffuse, brilliance, phong, specular, metallic, reflection, crand and
iridescence. Let's design a couple of textures that make use of these parameters.

Using Ambient

Since objects in POV-Ray are illuminated by light sources, the portions of those objects that are in shadow
would be completely black were it not for the first two finish properties;ent anddiffuse. Ambient

is used to simulate the light that is scattered around the scene that does not come directly from a light
source. Diffuse determines how much of the light that is seen comes directly from a light source. These two
keywords work together to control the simulation of ambient light. Let’s use our gray sphere to demonstrate
this. Let’s also change our plane back to its original green and white checkered pattern.

plane {
y, -1.5
pigment {checker Green, White}

}

sphere {
<0,0,0>, 1
pigment { Gray75 }
finish {
ambient .2
diffuse .6

}
}

In the above example, the default values for ambient and diffuse are used. We render this to see what the
effect is and then make the following change to the finish.

ambient 0
diffuse 0

The sphere is black because we have specified that none of the light coming from any light source will be
reflected by the sphere. Let's changeruse back to the default of 0.6.

Now we see the gray surface color where the light from the light source falls directly on the sphere but the
shaded side is still absolutely black. Now let's changefuse to 0.3 anckmbient to 0.3.

The sphere now looks almost flat. This is because we have specified a fairly high degree of ambient light
and only a low amount of the light coming from the light source is diffusely reflected towards the camera.
The default values ofambient anddiffuse are pretty good averages and a good starting point. In most
cases, an ambient value of 0.1 ... 0.2 is sufficient and a diffuse value of 0.5 ... 0.7 will usually do the job.
There are a couple of exceptions. If we have a completely transparent surface with high refractive and/or
reflective values, low values of both ambient and diffuse may be best. Here is an example:

sphere {
<0,0,0>, 1
pigment { White filter 1 }
finish {
ambient 0
diffuse 0
reflection .25
specular 1
roughness .001
}

interior { ior 1.33 }
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This is glass, obviously. Glass is a material that takes nearly all of its appearance from its surroundings.
Very little of the surface is seen because it transmits or reflects practically all of the light that shines on it.
Seeglass.inc for some other examples.

If we ever need an object to be completely illuminated independently of the lighting situation in a given
scene we can do this artificially by specifying amient value of 1 and aiiffuse value of 0. This will
eliminate all shading and simply give the object its fullest and brightest color value at all points. This is
good for simulating objects that emit light like light bulbs and for skies in scenes where the sky may not be
adequately lit by any other means.

Let's try this with our sphere now.

sphere {
<0,0,0>, 1
pigment { White }
finish {
ambient 1
diffuse 0

}

Rendering this we get a blinding white sphere with no visible highlights or shaded parts. It would make a
pretty good street light.

Using Surface Highlights

In the glass example above, we noticed that there were bright hittkspotson the surface. This gave the
sphere a hard, shiny appearance. POV-Ray gives us two ways to specify surface specular highlights. The
first is calledPhong highlighting.Usually, Phong highlights are described using two keywogdsag and
phong_size. The float that followshong determines the brightness of the highlight while the float following
phong_size determines its size. Let’s try this.

sphere {
<0,0,0>, 1
pigment { Gray50 }
finish {
ambient .2
diffuse .6
phong .75
phong_size 25
}
}

Rendering this we see a fairly broad, soft highlight that gives the sphere a kind of plastic appearance.
Now let's change phong_size to 150. This makes a much smaller highlight which gives the sphere the
appearance of being much harder and shinier.

There is another kind of highlight that is calculated by a different means cgdlecllar highlighting It is
specified using the keyworghecular and operates in conjunction with another keyword catl@@hness.
These two keywords work together in much the same way.@s; andphong_size to create highlights that
alter the apparent shininess of the surface. Let’s try using specular in our sphere.

sphere {
<0,0,0>, 1
pigment { Gray50 }
finish {
ambient .2
diffuse .6
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specular .75
roughness .1

}

Looking at the result we see a broad, soft highlight similar to what we had when wetsedsize of

25. Changeoughness to .001 and render again. Now we see a small, tight highlight similar to what we
had when we useghong_size 0f 150. Generally speaking, specular is slightly more accurate and therefore
slightly more realistic than phong but you should try both methods when designing a texture. There are
even times when both phong and specular may be used on a finish.

Using Reflection, Metallic and Metallic

There is another surface parameter that goes hand in hand with highlighits;t ion. Surfaces that are
very shiny usually have a degree of reflection to them. Let’s take a look at an example.

sphere {

<0,0,0>, 1

pigment { Gray50 }

finish {
ambient .2
diffuse .6
specular .75
roughness .001
reflection {

.5

}

}

We see that our sphere now reflects the green and white checkered plane and the black background but the
gray color of the sphere seems out of place. This is another time when a lower diffuse value is needed.
Generally, the highereflection is the lowerdiffuse should be. We lower the diffuse value to 0.3 and the
ambient value to 0.1 and render again. That is much better. Let's make our sphere as shiny as a polished
gold ball bearing.

sphere {
<0,0,0>, 1
pigment { BrightGold }
finish {
ambient .1
diffuse .1
specular 1
roughness .001
reflection {
.75

}

That is close but there is something wrong, the colour of the reflection and the highlight. To make the
surface appear more like metal the keywa¢da11ic is used. We add it now to see the difference.

sphere {
<0,0,0>, 1
pigment { BrightGold }
finish {

ambient .1
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diffuse .1
specular 1
roughness .001
reflection {
.75
metallic

}

The reflection has now more of the gold color than the color of its environment. Last detail, the highlight.
We add another metallic statement, now to the finish and not inside the reflection block.

sphere {
<0,0,0>, 1
pigment { BrightGold }
finish {
ambient .1
diffuse .1
specular 1
roughness .001
metallic
reflection {
.75
metallic

}

We see that the highlight has taken on the color of the surface rather than the light source. This gives the
surface a more metallic appearance.

Using Iridescence

Iridescencds what we see on the surface of an oil slick when the sun shines on it. The rainbow effect is
created by something callatin-film interferencgread section "Iridescence” for details). For now let's

just try using it. Iridescence is specified by thed statement and three values: amount,ckness and
turbulence. The amount is the contribution to the overall surface color. Usually 0.1 to 0.5 is sufficient
here. The thickness affects the "busyness” of the effect. Keep this between 0.25 and 1 for best results. The
turbulence is a little different from pigment or normal turbulence. We cannetsetes, 1anbda Or omega

but we can specify an amount which will affect the thickness in a slightly different way from the thickness
value. Values between 0.25 and 1 work best here too. Finally, iridescence will respond to the surface normal
since it depends on the angle of incidence of the light rays striking the surface. With all of this in mind,
let's add some iridescence to our glass sphere.

sphere {
<0,0,0>, 1
pigment { White filter 1 }
finish {
ambient .1
diffuse .1
reflection .2
specular 1
roughness .001
irid {
0.35
thickness .5
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turbulence .5

}

}

interior({
ior 1.5
fade_distance 5
fade_power 1
caustics 1

}

We try to vary the values for amount, thickness and turbulence to see what changes they make. We also try
to add anormal block to see what happens.

3.4.4 Working With Pigment Maps

Let's look at the pigment map. We must not confuse this with a color map, as color maps can only take
individual colors as entries in the map, while pigment maps can use entire other pigment patterns. To get
a feel for these, let’s begin by setting up a basic plane with a simple pigment map. Now, in the following
example, we are going to declare each of the pigments we are going to use before we actually use them.
This is not strictly necessary (we could put an entire pigment description in each entry of the map) but it
just makes the whole thing more readable.

// simple Black on White checkerboard... it’s a classic
#declare Pigmentl = pigment {
checker color Black color White
scale .1
}
// kind of a "psychedelic rings" effect
#declare Pigment2 = pigment {
wood
color_map {
[ 0.0 Red ]
[ 0.3 Yellow ]
[ 0.6 Green ]
[ 1.0 Blue ]
}
}
plane {
-z, 0
pigment {
gradient x
pigment_map {
[ 0.0 Pigmentl ]
[ 0.5 Pigment2 ]
[ 1.0 Pigmentl ]
}

}

Okay, what we have done here is very simple, and probably quite recognizable if we have been working
with color maps all along anyway. All we have done is substituted a pigment map where a color map would
normally go, and as the entries in our map, we have referenced our declared pigments. When we render this
example, we see a pattern which fades back and forth between the classic checkerboard, and those colorful
rings. Because we fade from Pigmentl to Pigment2 and then back again, we see a clear blending of the
two patterns at the transition points. We could just as easily get a sudden transition by amending the map
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to read.

pigment_map {
[ 0.0 Pigmentl ]
[ 0.5 Pigmentl ]
[ 0.5 Pigment2 ]
[ 1.0 Pigment2 ]
}

Blending individual pigment patterns is just the beginning.

3.4.5 Working With Normal Maps

For our next example, we replace the plane in the scene with this one.

plane {
-z, 0
pigment { White }
normal {
gradient x
normal_map {
[ 0.0 bumps 1 scale .1]
[ 1.0 ripples 1 scale .1]
}
}
}

First of all, we have chosen a solid white color to show off all bumping to best effect. Secondly, we notice
that our map blends smoothly from all bumps at 0.0 to all ripples at 1.0, but because this is a default gradient,
it falls off abruptly back to bumps at the beginning of the next cycle. We Render this and see just enough
sharp transitions to clearly see where one normal gives over to another, yet also an example of how two
normal patterns look while they are smoothly blending into one another.

The syntax is the same as we would expect. We just changed the type of map, moved it into the normal
block and supplied appropriate bump types. It is important to remember that as of POV-Ray 3, all patterns
that work with pigments work as normals as well (and vice versa, except for facets) so we could just as
easily have blended from wood to granite, or any other pattern we like. We experiment a bit and get a feel
for what the different patterns look like.

After seeing how interesting the various normals look blended, we might like to see them completely
blended all the way through rather than this business of fading from one to the next. Well, that is possible
too, but we would be getting ahead of ourselves. That is calleditheage function, and we will return to

it a little bit further down the page.

3.4.6  Working With Texture Maps

We know how to blend colors, pigment patterns, and normals, and we are probably thinking what about
finishes? What about whole textures? Both of these can be kind of covered under one topic. While there is
no finish map per se, there are texture maps, and we can easily adapt these to serve as finish maps, simply
by putting the same pigment and/or normal in each of the texture entries of the map. Here is an example.
We eliminate the declared pigments we used before and the previous plane, and add the following.

#declare Texturel = texture {
pigment { Grey }
finish { reflection 1 }

}
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#declare Texture2 = texture {
pigment { Grey }
finish { reflection 0 }
}
cylinder {
<=2, 5, =2>, <=2, -5, -2>, 1
pigment { Blue }
}
plane {
-z, 0
rotate y * 30
texture {
gradient y
texture_map {
[ 0.0 Texturel
[ 0.4 Texturel
[ 0.6 Texture?2
[ 1.0 Texture2

}

scale 2

}

Now, what have we done here? The background plane alternates vertically between two textures, identical
except for their finishes. When we render this, the cylinder has a reflection part of the way down the plane,
and then stops reflecting, then begins and then stops again, in a gradient pattern down the surface of the
plane. With a little adaptation, this could be used with any pattern, and in any number of creative ways,
whether we just wanted to give various parts of an object different finishes, as we are doing here, or whole
different textures altogether.

One might ask: if there is a texture map, why do we need pigment and normal maps? Fair question. The
answer: speed of calculation. If we use a texture map, for every in-between point, POV-Ray must make
multiple calculations for each texture element, and then run a weighted average to produce the correct value
for that point. Using just a pigment map (or just a normal map) decreases the overall number of calculations,
and our texture renders a bit faster in the bargain. As a rule of thumb: we use pigment or normal maps where
we can and only fall back on texture maps if we need the extra flexibility.

3.4.7 Working With List Textures

If we have followed the corresponding tutorials on simple pigments, we know that there are three patterns
calledcolor list patterns, because rather than using a color map, these simple but useful patterns take a list
of colors immediately following the pattern keyword. We are talking about checker, hexagon, the brick
pattern and the object pattern.

Naturally they also work with whole pigments, normals, and entire textures, just as the other patterns do
above. The only difference is that we list entries in the pattern (as we would do with individual colors)
rather than using a map of entries. Here is an example. We strike the plane and any declared pigments we
had left over in our last example, and add the following to our basic file.

#declare Pigmentl = pigment {
hexagon
color Yellow color Green color Grey
scale .1
}
#declare Pigment2 = pigment {
checker
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color Red color Blue
scale .1

}
#declare Pigment3 = pigment {
brick
color White color Black
rotate -90*x
scale .1
}
box {
-5, 5
pigment {
hexagon
pigment {Pigmentl}
pigment {Pigment2}
pigment {Pigment3}
rotate 90*x

}

We begin by declaring an example of each of the color list patterns as individual pigments. Then we use
the hexagon pattern aspggment listpattern, simply feeding it a list of pigments rather than colors as we

did above. There are two rotate statements throughout this example, because bricks are aligned along the z-
direction, while hexagons align along the y-direction, and we wanted everything to face toward the camera
we originally declared out in the -z-direction so we can really see the patterns within patterns effect here.

Of course color list patterns used to be only for pigments, but as of POV-Ray 3, everything that worked for
pigments can now also be adapted for normals or entire textures. A couple of quick examples might look
like
normal {
brick
normal { granite .1 }

normal { bumps 1 scale .1 }

}
or...

texture {
checker
texture { Gold Metal }
texture { Silver_Metal }

}

3.4.8 What About Tiles?

In earlier versions of POV-Ray, there was a texture pattern calleg. By simply using a checker texture
pattern (as we just saw above), we can achieve the same thing as tiles used to do, so it is now obsolete. It
is still supported by POV-Ray 3 for backwards compatibility with old scene files, but now is a good time to
get in the habit of using a checker pattern instead.

3.4.9 Average Function

Now things get interesting. Above, we began to see how pigments and normals can fade from one to the
other when we used them in maps. But how about if we want a smooth blend of patterns all the way
through? That is where a new feature calleerage can come in very handy. Average works with pigment,
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normal, and texture maps, although the syntax is a little bit different, and when we are not expecting it, the
change can be confusing. Here is a simple example. We use our standard includes, camera and light source
from above, and enter the following object.

plane { -z, 0
pigment { White }
normal {
average
normal_map {
[1, gradient x ]
[1, gradient y ]
}

}

What we have done here is pretty self explanatory as soon as we render it. We have combined a vertical
with a horizontal gradient bump pattern, creating crisscrossing gradients. Actually, the crisscrossing effect
is a smooth blend of gradient x with gradient y all the way across our plane. Now, what about that syntax
difference?

We see how our normal map has changed from earlier examples. The floating point value to the left-hand
side of each map entry has a different meaning now. It gives the weight factor per entry in the map. Try
some different values for the 'gradient X’ entry and see how the normal changes.

The weight factor can be omitted, the result then will be the same as if each entry had a weight factor of 1.

3.4.10 Working With Layered Textures

With the multitudinous colors, patterns, and options for creating complex textures in POV-Ray, we can eas-
ily become deeply engrossed in mixing and tweaking just the right textures to apply to our latest creations.
But as we go, sooner or later there is going to come $patialtexture. That texture that is sort of like
wood, only varnished, and with a kind of spotty yellow streaking, and some vertical gray flecks, that looks
like someone started painting over it all, and then stopped, leaving part of the wood visible through the
paint.

Only... now what? How do we get all that into one texture? No pattern can do that many things. Before we
panic and say image map there is at least one more opégered textures

With layered textures, we only need to specify a series of textures, one after the other, all associated with
the same object. Each texture we list will be applied one on top of the other, from bottom to top in the order
they appear.

Itis very important to note that we must have some degree of transparency (filter or transmit) in the pigments
of our upper textures, or the ones below will get lost underneath. We will not receive a warning or an error -
technically it is legal to do this: it just does not make sense. Itis like spending hours sketching an elaborate
image on a bare wall, then slapping a solid white coat of latex paint over it.

Let's design a very simple object with a layered texture, and look at how it works. We create a file called
LAYTEX.Pov and add the following lines.

#include "colors.inc"
#include "textures.inc"
camera {
location <0, 5, -30>
look_at <0, 0, 0>
}
light_source { <-20, 30, -50> color White }
plane { y, 0 pigment { checker color Green color Yellow 1} }
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background { rgb <.7, .7, 1>}

box {
<-10, 0, -10>, <10, 10, 10>
texture {
Silver_Metal // a metal object ...
normal { // ... which has suffered a beating
dents 2
scale 1.5

}
} // (end of base texture)
texture { // ... has some flecks of rust ...
pigment {
granite
color_map {
[0.0 rgb <.2, 0, 0> ]
[0.2 color Brown ]
[0.2 rgbt <1, 1, 1, 1> ]
[1.0 rgbt <1, 1, 1, 1> ]
}
frequency 16
}
} // (end rust fleck texture)

texture { // ... and some sooty black marks
pigment {

bozo

color_map {
[0.0 color Black ]
[0.2 color rgbt <0, 0, 0, .5> ]
[0.4 color rgbt <.5, .5, .5, .5>]
[0.5 color rgbt <1, 1, 1, 1> ]
[1.0 color rgbt <1, 1, 1, 1> ]

}

scale 3

}
} // (end of sooty mark texture)
} // (end of box declaration)

Whew. This gets complicated, so to make it easier to read, we have included comments showing what we
are doing and where various parts of the declaration end (so we do not get lost in all those closing brackets!).
To begin, we created a simple box over the classic checkerboard floor, and give the background sky a pale
blue color. Now for the fun part...

To begin with we made the box use thgiver Metal texture as declared in textures.inc (for bonus points,

look uptextures.inc and see how this standard texture was originally created sometime). To give it the
start of its abused state, we added the dents normal pattern, which creates the illusion of some denting in
the surface as if our mysterious metal box had been knocked around quite a bit.

The flecks of rust are nothing but a fine grain granite pattern fading from dark red to brown which then
abruptly drops to fully transparent for the majority of the color map. True, we could probably come up with

a more realistic pattern of rust using pigment maps to cluster rusty spots, but pigment maps are a subject
for another tutorial section, so let’s skip that just now.

Lastly, we have added a third texture to the pot. The randomly shifting texture gradually fades from
blackened centers to semi-transparent medium gray, and then ultimately to fully transparent for the latter
half of its color map. This gives us a look of sooty burn marks further marring the surface of the metal box.
The final result leaves our mysterious metal box looking truly abused, using multiple texture patterns, one
on top of the other, to produce an effect that no single pattern could generate!
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Declaring Layered Textures

In the event we want to reuse a layered texture on several objects in our scene, it is perfectly legal to
declare a layered texture. We will not repeat the whole texture from above, but the general format would be
something like this:

#declare Abused_Metal =
texture { /* insert your base texture here... */ }
texture { /* and your rust flecks here... */ }
texture { /* and of course, your sooty burn marks here */ }

POV-Ray has no problem spotting where the declaration ends, because the textures follow one after the other
with no objects or directives in between. The layered texture to be declared will be assumed to continue
until it finds something other than another texture, so any number of layers can be added in to a declaration
in this fashion.

One final word about layered textures: whatever layered texture we create, whether declared or not, we
must not leave off the texture wrapper. In conventional single textures a common shorthand is to have just

a pigment, or just a pigment and finish, or just a normal, or whatever, and leave them outside of a texture

statement. This shorthand does not extend to layered textures. As far as POV-Ray is concerned we can
layer entire textures, but not individual pieces of textures. For example

#declare Bad_Texture =
texture { /* insert your base texture here... */ }
pigment { Red filter .5 }
normal { bumps 1 }

will not work. The pigment and the normal are just floating there without being part of any particular
texture. Inside an object, with just a single texture, we can do this sort of thing, but with layered textures,
we would just generate an error whether inside the object or in a declaration.

Another Layered Textures Example

To further explain how layered textures work another example is described in detail. A tablecloth is created
to be used in a picnic scene. Since a simple red and white checkered cloth looks entirely too new, too flat,
and too much like a tiled floor, layered textures are used to stain the cloth.

We are going to create a scene containing four boxes. The first box has that plain red and white texture
we started with in our picnic scene, the second adds a layer meant to realistically fade the cloth, the third
adds some wine stains, and the final box adds a few wrinkles (not another layer, but we must note when and
where adding changes to the surface normal have an effect in layered textures).

We start by placing a camera, some lights, and the first box. At this stage, the texture is plain tiling, not
layered. See filelayeredi.pov.

#include "colors.inc"
camera {
location <0, 0, -6>
look_at <0, 0, 0>
}
light_source { <-20, 30, -100> color White }
light_source { <10, 30, -10> color White }
light_source { <0, 30, 10> color White }
#declare PLAIN_TEXTURE =
// red/white check
texture {
pigment {
checker
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color rgb<1.000, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>

}
// plain red/white check box

box {
<-1, -1, -1>, <1, 1, 1>
texture {

PLAIN_TEXTURE
}
translate <-1.5, 1.2, 0>
}

We render this scene. It is not particularly interesting, is it? That is why we will use some layered textures
to make it more interesting.

First, we add a layer of two different, partially transparent grays. We tile them as we had tiled the red and
white colors, but we add some turbulence to make the fading more realistic. We add the following box to
the previous scene and re-render (seelfilered2.pov).

#declare FADED_TEXTURE =
// red/white check texture
texture {
pigment {

checker
color rgb<0.920, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>

}
// greys to fade red/white

texture {
pigment {
checker
color rgbf<0.632, 0.612, 0.688, 0.698>
color rgbf<0.420, 0.459, 0.520, 0.953>
turbulence 0.500
scale <0.2500, 0.2500, 0.2500>

}
// faded red/white check box

box {
<=1, -1, -1>, <1, 1, 1>
texture {

FADED_TEXTURE

}
translate <1.5, 1.2, 0>

}
Even though it is a subtle difference, the red and white checks no longer look quite so new.

Since there is a bottle of wine in the picnic scene, we thought it might be a nice touch to add a stain or two.
While this effect can almost be achieved by placing a flattened blob on the cloth, what we really end up
with is a spill effect, not a stain. Thus it is time to add another layer.

Again, we add another box to the scene we already have scripted and re-render (sgerfil&s . pov).

#declare STAINED_TEXTURE =
// red/white check
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texture {
pigment {
checker
color rgb<0.920, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>

}

// greys to fade check

texture {

pigment {

checker
color rgbf<0.634, 0.612, 0.688, 0.698>
color rgbf<0.421, 0.463, 0.518, 0.953>
turbulence 0.500
scale <0.2500, 0.2500, 0.2500>

}
// wine stain
texture {
pigment {
spotted
color_map {
[ 0.000 color rgb<0.483, 0.165, 0.165> ]
[ 0.329 color rgbf<1.000, 1.000, 1.000, 1.000> ]
[ 0.734 color rgbf<1.000, 1.000, 1.000, 1.000> ]
[ 1.000 color rgb<0.483, 0.165, 0.165> ]
}
turbulence 0.500
frequency 1.500

}

// stained box

box {
<-1, -1, -1>, <1, 1, 1>
texture {

STAINED_TEXTURE

}
translate <-1.5, -1.2, 0>

}
Now there is a tablecloth texture with personality.

Another touch we want to add to the cloth are some wrinkles as if the cloth had been rumpled. This is not
another texture layer, but when working with layered textures, we must keep in mind that changes to the
surface normal must be included in the uppermost layer of the texture. Changes to lower layers have no
effect on the final product (no matter how transparent the upper layers are).

We add this final box to the script and re-render (see filgereds.pov)

#declare WRINKLED_TEXTURE =
// red and white check
texture {
pigment {

checker
color rgb<0.920, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>
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}
// greys to "fade" checks
texture {
pigment {
checker
color rgb£f<0.632, 0.612, 0.688, 0.698>
color rgbf<0.420, 0.459, 0.520, 0.953>
turbulence 0.500
scale <0.2500, 0.2500, 0.2500>
}
}
// the wine stains
texture {
pigment {
spotted
color_map {
[ 0.000 color rgb<0.483, 0.165, 0.165> ]
[ 0.329 color rgbf<1.000, 1.000, 1.000, 1.000> ]
[ 0.734 color rgbf<1.000, 1.000, 1.000, 1.000> ]
[ 1.000 color rgb<0.483, 0.165, 0.165> ]
}
turbulence 0.500
frequency 1.500
}
normal {
wrinkles 5.0000
}
}
// wrinkled box

box {
<=1, -1, -1>, <1, 1, 1>
texture {

WRINKLED_TEXTURE

}
translate <1.5, -1.2, 0>

}

Well, this may not be the tablecloth we want at any picnic we are attending, but if we compare the final box
to the first, we see just how much depth, dimension, and personality is possible just by the use of creative
texturing.

One final note: the comments concerning the surface normal do not hold true for finishéswdfr gayer
contains a specular finish and apperlayer does not, any place where the upper layer is transparent, the
specular will show through.

3.4.11 When All Else Fails: Material Maps

We have some pretty powerful texturing tools at our disposal, but what if we want a more free form
arrangement of complex textures? Well, just as image maps do for pigments, and bump maps do for
normals, whole textures can be mapped using a material map, should the need arise.

Just as with image maps and bump maps, we need a source image in bitmapped format which will be called
by POV-Ray to serve as the map of where the individual textures will go, but this time, we need to specify
what texture will be associated with which palette index. To make such an image, we can use a paint
program which allows us to select colors by their palette index number (the actual color is irrelevant, since
itis only a map to tell POV-Ray what texture will go at that location). Now, if we have the complete package
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that comes with POV-Ray, we have in our include files an image callethp.qgif which is a bitmapped

image that uses only the first four palette indices to create a bordered square with the words "Persistence
of Vision” in it. This will do just fine as a sample map for the following example. Using our same include
files, the camera and light source, we enter the following object.

plane {
-z, 0
texture {
material_map {
gif "povmap.gif"
interpolate 2
once

texture { PinkAlabaster } // the inner border
texture { pigment { DMFDarkOak } } // outer border
texture { Gold_Metal } // lettering
texture { Chrome_Metal } // the window panel

}
translate <-0.5, -0.5, 0>
scale 5

}

The position of the light source and the lack of foreground objects to be reflected do not show these textures
off to their best advantage. But at least we can see how the process works. The textures have simply been
placed according to the location of pixels of a particular palette index. By usingith&eyword (to keep

it from tiling), and translating and scaling our map to match the camera we have been using, we get to see
the whole thing laid out for us.

Of course, that is just with palette mapped image formats, such as GIF and certain flavors of PNG. Material
maps can also use non-paletted formats, such as the TGA files that POV-Ray itself outputs. That leads to an
interesting consequence: We can use POV-Ray to produce source maps for POV-Ray! Before we wrap up
with some of the limitations of special textures, let's do one more thing with material maps, to show how
POV-Ray can make its own source maps.

To begin with, if using a non-paletted image, POV-Ray looks at the 8 bit red component of the pixel’'s color
(which will be a value from 0 to 255) to determine which texture from the list to use. So to create a source
map, we need to control very precisely what the red value of a given pixel will be. We can do this by

1. Using an rgb statement to choose our color such asigf255,0,0>, where "N” is the red value we
want to assign that pigment, and then...

2. Use no light sources and apply a finishrofiish { ambient 1 } to all objects, to ensure that high-
lighting and shadowing will not interfere.

Confused? Alright, here is an example, which will generate a map very muchdikep.gif which

we used earlier, except in TGA file format. We notice that we have given the pigments blue and green

components too. POV-Ray will ignore that in our final map, so this is really for us humans, whose unaided

eyes cannot tell the difference between red variances of 0 to 4/255ths. Without those blue and green
variances, our map would look to our eyes like a solid black screen. That may be a great way to send
secret messages using POV-Ray (plug it into a material map to decode) but it is no use if we want to see
what our source map looks like to make sure we have what we expected to.

We create the following code, namepitvmap.pov, then render it. This will create an output file called
povmap.tga (povmap.bmp on Windows systems.

camera {
orthographic
up <0, 5, 0>
right <5, 0, 0>
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location <0, 0, -25>
look_at <0, 0, 0>
}
plane {
-z, 0
pigment { rgb <1/255, 0, 0.5> }
finish { ambient 1 }
}
box {
<-2.3, -1.8, -0.2>, <2.3, 1.8, -0.2>
pigment { rgb <0/255, 0, 1> }
finish { ambient 1 }
}
box {
<-1.95, -1.3, -0.4>, <1.95, 1.3, -0.3>
pigment { rgb <2/255, 0.5, 0.5> }
finish { ambient 1 }
}
text {
ttf "crystal.ttf", "The vision", 0.1, O
scale <0.7, 1, 1>
translate <-1.8, 0.25, -0.5>
pigment { rgb <3/255, 1, 1>}
finish { ambient 1 }
}
text {
ttf "crystal.ttf", "Persists!", 0.1, 0
scale <0.7, 1, 1>
translate <-1.5, -1, -0.5>
pigment { rgb <3/255, 1, 1>}
finish { ambient 1 }

}

All we have to do is modify our last material map example by changing the material map from GIF to
TGA and modifying the filename. When we render using the new map, the result is extremely similar to
the palette mapped GIF we used before, except that we did not have to use an external paint program to
generate our source: POV-Ray did it all!

3.4.12 Limitations Of Special Textures

There are a couple limitations to all of the special textures we have seen (from textures, pigment and normal
maps through material maps). First, if we have used the default directive to set the default texture for all

items in our scene, it will not accept any of the special textures discussed here. This is really quite minor,

since we can always declare such a texture and apply it individually to all objects. It does not actually

prevent us from doing anything we could not otherwise do.

The other is more limiting, but as we will shortly see, can be worked around quite easily. If we have worked
with layered textures, we have already seen how we can pile multiple texture patterns on top of one another
(as long as one texture has transparency in it). This very useful technique has a problem incorporating the
special textures we have just seen as a layer. But there is an answer!

For example, say we have a layered texture callpdckled Metal, Which produces a silver metallic sur-

face, and then puts tiny specks of rust all over it. Then we decide, for a really rusty look, we want to create
patches of concentrated rust, randomly over the surface. The obvious approach is to create a special texture
pattern, with transparency to use as the top layer. But of course, as we have seen, we would not be able
to use that texture pattern as a layer. We would just generate an error message. The solution is to turn the
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problem inside out, and make our layered texture part of the texture pattern instead, like this

// This part declares a pigment for use
// in the rust patch texture pattern
#declare Rusty = pigment {
granite
color_map f{
[ 0 rgb <0.2, 0, 0> ]
[ 1 Brown ]

}
frequency 20

}
// And this part applies it
// Notice that our original layered texture
// "Speckled_Metal" is now part of the map
#declare Rust_Patches = texture {
bozo
texture_map |
[ 0.0 pigment {Rusty} ]
[ 0.75 Speckled_Metal
[ 1.0 Speckled Metal ]
}
}

And the ultimate effect is the same as if we had layered the rust patches on to the speckled metal anyway.

With the full array of patterns, pigments, normals, finishes, layered and special textures, there is now
practically nothing we cannot create in the way of amazing textures. An almost infinite number of new
possibilities are just waiting to be created!

3.5 Using Atmospheric Effects

You know you have been raytracing too long when ...
... You want to cheat and look at nature’s source code.
— Mark Stock

POV-Ray offers a variety of atmospheric effects, i. e. features that affect the background of the scene or the
air by which everything is surrounded.

Itis easy to assign a simple color or a complex color pattern to a virtual sky sphere. You can create anything
from a cloud free, blue summer sky to a stormy, heavy clouded sky. Even starfields can easily be created.

You can use different kinds of fog to create foggy scenes. Multiple fog layers of different colors can add an
eerie touch to your scene.

A much more realistic effect can be created by using an atmosphere, a constant fog that interacts with the
light coming from light sources. Beams of light become visible and objects will cast shadows into the fog.

Last but not least you can add a rainbow to your scene.

3.5.1 The Background

Thebackground feature is used to assign a color to all rays that do not hit any object. This is done in the
following way.

camera {
location <0, 0, -10>
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look_at <0, 0, 0>
}
background { color rgb <0.2, 0.2, 0.3> }
sphere {

0, 1

pigment { color rgb <0.8, 0.5, 0.2> }
}

The background color will be visible if a sky sphere is used and if some translucency remains after all sky
sphere pigment layers are processed.

3.5.2 The Sky Sphere

The sky_sphere can be used to easily create a cloud covered sky, a nightly star sky or whatever sky you
have in mind.

In the following examples we will start with a very simple sky sphere that will get more and more complex
as we add new features to it.

Creating a Sky with a Color Gradient

Beside the single color sky sphere that is covered with the background feature the simplest sky sphere is a
color gradient. You may have noticed that the color of the sky varies with the angle to the earth’s surface
normal. If you look straight up the sky normally has a much deeper blue than it has at the horizon.

We want to model this effect using the sky sphere as shown in the segne1.pov below.

#include "colors.inc"
camera {
location <0, 1, -4>
look_at <0, 2, 0>
angle 80
}
light_source { <10, 10, -10> White }
sphere {
2%y, 1
pigment { color rgb <1, 1, 1> }
finish { ambient 0.2 diffuse 0 reflection 0.6 }
}
sky_sphere {
pigment {
gradient y
color_map {
[0 color Red]
[1 color Blue]
}
scale 2
translate -1
}
}

The interesting part is the sky sphere statement. It contains a pigment that describes the look of the sky
sphere. We want to create a color gradient along the viewing angle measured against the earth’s surface
normal. Since the ray direction vector is used to calculate the pigment colors we have to use the y-gradient.

The scale and translate transformation are used to map the points derived from the direction vector to the
right range. Without those transformations the pattern would be repeated twice on the sky sphere. The
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scale statement is used to avoid the repetition anditheisiate -1 statement moves the color at index
zero to the bottom of the sky sphere (that is the point of the sky sphere you will see if you look straight
down).

After this transformation the color entry at position O will be at the bottom of the sky sphere, i. e. below us,
and the color at position 1 will be at the top, i. e. above us.

The colors for all other positions are interpolated between those two colors as you can see in the resulting
image.

Figure 3.55: A simple gradient sky sphere.

If you want to start one of the colors at a specific angle you will first have to convert the angle to a color
map index. This is done by using the formudlaor map_index = (1 - cos(angle)) / 2 where the angle is
measured against the negated earth’s surface normal. This is the surface normal pointing towards the center
of the earth. An angle of 0 degrees describes the point below us while an angle of 180 degrees represents
the zenith.

In POV-Ray you first have to convert the degree valueatd ans as it is shown in the following example.

sky_sphere {
pigment {
gradient y
color_map {
[ (1-cos(radians( 30)))/2 color Red]
[ (1-cos (radians (120)))/2 color Blue]
}
scale 2
translate -1
}
}

This scene uses a color gradient that starts with a red color at 30 degrees and blends into the blue color at
120 degrees. Below 30 degrees everything is red while above 120 degrees all is blue.

Adding the Sun

In the following example we will create a sky with a red sun surrounded by a red color halo that blends into
the dark blue night sky. We will do this using only the sky sphere feature.

The sky sphere we use is shown below. A ground plane is also added for greater realisi( pov).

sky_sphere {
pigment {
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gradient y
color_map {
[0.000 0.002 color rgb <1.0, 0.2, 0.0>
color rgb <1.0, 0.2, 0.0>]
[0.002 0.200 color rgb <0.8, 0.1, 0.0>
color rgb <0.2, 0.2, 0.3>]

}
scale 2
translate -1

}
rotate -135*x

}
plane {

yl O
pigment { color Green }
finish { ambient .3 diffuse .7 }

}

The gradient pattern and the transformation inside the pigment are the same as in the example in the previous
section.

The color map consists of three colors. A bright, slightly yellowish red that is used for the sun, a darker red
for the halo and a dark blue for the night sky. The sun’s color covers only a very small portion of the sky
sphere because we do not want the sun to become too big. The color is used at the color map values 0.000
and 0.002 to get a sharp contrast at value 0.002 (we do not want the sun to blend into the sky). The darker
red color used for the halo blends into the dark blue sky color from value 0.002 to 0.200. All values above
0.200 will reveal the dark blue sky.

The rotate -135*x Statement is used to rotate the sun and the complete sky sphere to its final position.
Without this rotation the sun would be at 0 degrees, i.e. right below us.

Figure 3.56: A red sun descends into the night.

Looking at the resulting image you will see what impressive effects you can achieve with the sky sphere.

Adding Some Clouds

To further improve our image we want to add some clouds by adding a second pigment. This new pigment
uses the bozo pattern to create some nice clouds. Since it lays on top of the other pigment it needs some
transparent colors in the color map (look at entries 0.5 to 1.0).

sky_sphere {
pigment {
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gradient y
color_map {

[0.000 0.002

[0.002 0.200

}
scale 2
translate -1
}
pigment {
bozo
turbulence 0.
octaves 6
omega 0.7
lambda 2
color_map {
[0.0 0.1

[0.1 0.5
[0.5 1.0

}

65

color
color
color
color
color
color

scale <0.2, 0.5, 0

}
rotate -135*x

color rgb <1.0,
color rgb <1.0,
color rgb <0.8,
color rgb <0.2,

o

o O o O
N NN

rgb <0.85, 0.85, 0.
rgb <0.75, 0.75, 0.
rgb <0.75, 0.75, 0.

rgbt <1, 1, 1, 1>]
rgbt <1, 1, 1, 1>
rgbt <1, 1, 1, 1>]

.2>

Figure 3.57: A cloudy sky with a setting sun.

.0>
0.
, 0.
0.

0>]
0>
3>]

85>
75>]
75>

The sky sphere has one drawback as you might notice when looking at the final krage{.pov). The

sun does not emit any light and the clouds will not cast any shadows. If you want to have clouds that cast
shadows you will have to use a real, large sphere with an appropriate texture and a light source somewhere

outside the sphere.

3.5.3 The Fog

You can use theog feature to add fog of two different types to your scene: constant fog and ground fog.
The constant fog has a constant density everywhere while the ground fog’s density decreases as you move

upwards.
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The usage of both fog types will be described in the next sections in detail.

A Constant Fog

The simplest fog type is the constant fog that has a constant density in all locations. It is specified by a
distance keyword which actually describes the fog's density and actagr.

The distance value determines the distance at which 36.8% of the background is still visible (for a more
detailed explanation of how the fog is calculated read the reference section "Fog”).

The fog color can be used to create anything from a pure white to a red, blood-colored fog. You can also
use a black fog to simulate the effect of a limited range of vision.

The following example will show you how to add fog to a simple scenei(. pov).

#include "colors.inc"
camera {

location <0, 20, -100>
}
background { color SkyBlue }
plane {

y, —-10

pigment {

checker color Yellow color Green
scale 20

}
}
sphere {

<0, 25, 0>, 40

pigment { Red }

finish { phong 1.0 phong_size 20 }
}
sphere {

<-100, 150, 200>, 20

pigment { Green }

finish { phong 1.0 phong_size 20 }
}
sphere {

<100, 25, 100>, 30

pigment { Blue }

finish { phong 1.0 phong_size 20 }
}
light_source { <100, 120, 40> color White }
fog {

distance 150

color rgb<0.3, 0.5, 0.2>
}

According to their distance the spheres in this scene more or less vanish in the greenish fog we used, as
does the checkerboard plane.

Setting a Minimum Translucency

If you want to make sure that the background does not completely vanish in the fog you can set the trans-
mittance channel of the fog’s color to the amount of background you always want to be visible.

Using as transmittance value of 0.2 as in
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Figure 3.58: A foggy scene.

fog {
distance 150
color rgbt<0.3, 0.5, 0.2, 0.2>

}

the fog’s translucency never drops below 20% as you can see in the resulting imggedv).

N\

Figure 3.59: Fog with translucency threshold added.

Creating a Filtering Fog

The greenish fog we have used so far does not filter the light passing through it. All it does is to diminish
the light’s intensity. We can change this by using a non-zero filter channel in the fog's eglerdov).

fog {

distance 150

color rgb£f<0.3, 0.5, 0.2, 1.0>
}

The filter value determines the amount of light that is filtered by the fog. In our example 100% of the light
passing through the fog will be filtered by the fog. If we had used a value of 0.7 only 70% of the light would
have been filtered. The remaining 30% would have passed unfiltered.

You will notice that the intensity of the objects in the fog is not only diminished due to the fog’s color but
that the colors are actually influenced by the fog. The red and especially the blue sphere got a green hue.
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Figure 3.60: A filtering fog.

Adding Some Turbulence to the Fog

In order to make our somewhat boring fog a little bit more interesting we can add some turbulence, making
it look like it had a non-constant densityog4 . pov).

fog {
distance 150
color rgbf<0.3, 0.5, 0.2, 1.0>
turbulence 0.2
turb_depth 0.3

Figure 3.61: Fog made more interesting with turbulence

The turbulence keyword is used to specify the amount of turbulence used whilethedepth value is

used to move the point at which the turbulence value is calculated along the viewing ray. Values near zero
move the point to the viewer while values near one move it to the intersection point (the default value is 0.5).
This parameter can be used to avoid noise that may appear in the fog due to the turbulence (this normally
happens at very far away intersection points, especially if no intersection occurs, i. e. the background is
hit). If this happens just lower theirb_depth value until the noise vanishes.

You should keep in mind that the actual density of the fog does not change. Only the distance-based
attenuation value of the fog is modified by the turbulence value at a point along the viewing ray.
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Using Ground Fog

The much more interesting and flexible fog type is the ground fog, which is selected withdthepe
statement. Its appearance is described withftherffset andfog_alt keywords. The&og offset specifies

the height, i. e. y value, below which the fog has a constant density of oneocdhet keyword determines
how fast the density of the fog will approach zero as one moves along the y axis. At a height-of fog
offset+fogalt the fog will have a density of 25%.

The following exampleog5.pov) uses a ground fog which has a constant density below y=25 (the center
of the red sphere) and quickly falls off for increasing altitudes.

fog {
distance 150
color rgbf<0.3, 0.5, 0.2, 1.0>
fog_type 2
fog_offset 25
fog_alt 1

Figure 3.62: An example of ground fog.

Using Multiple Layers of Fog

It is possible to use several layers of fog by using more than one fog statement in your scene file. This is
quite useful if you want to get nice effects using turbulent ground fogs. You could add up several, differently
colored fogs to create an eerie scene for example.

Just try the following examplet§g6. pov).

fog {
distance 150
color rgb<0.3, 0.5, 0.2>
fog_type 2
fog_offset 25
fog_alt 1
turbulence 0.1
turb_depth 0.2
}
fog {
distance 150
color rgb<0.5, 0.1, 0.1>
fog_type 2
fog_offset 15
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fog_alt 4
turbulence 0.2
turb_depth 0.2
}
fog {
distance 150
color rgb<0.1, 0.1, 0.6>
fog_type 2
fog_offset 10
fog_alt 2

Figure 3.63: Using multiple layers of fog.

You can combine constant density fogs, ground fogs, filtering fogs, non-filtering fogs, fogs with a translu-
cency threshold, etc.

Fog and Hollow Objects

Whenever you use the fog feature and the camera is inside a non-hollow object you will not get any fog
effects. For a detailed explanation why this happens see "Empty and Solid Objects”.

In order to avoid this problem you have to make all those objects hollow by either making sure the camerais
outside these objects (using thererse keyword) or by adding theo11ow to them (which is much easier).

3.5.4 The Rainbow

Therainbow feature can be used to create rainbows and maybe other more strange effects. The rainbow is
a fog like effect that is restricted to a cone-like volume.

Starting With a Simple Rainbow

The rainbow is specified with a lot of parameters: the angle under which it is visible, the width of the color
band, the direction of the incoming light, the fog-like distance based particle density and last but not least
the color map to be used.

The size and shape of the rainbow are determined bythe: and width keywords. Thedirection
keyword is used to set the direction of the incoming light, thus setting the rainbow’s position. The rainbow
is visible when the angle between the direction vector and the incident light direction is larger than angle-
width/2 and smaller than angle+width/2.
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The incoming light is the virtual light source that is responsible for the rainbow. There need not be a real
light source to create the rainbow effect.

The rainbow is a fog-like effect, i.e. the rainbow’s color is mixed with the background color based on the
distance to the intersection point. If you choose small distance values the rainbow will be visible on objects,
not just in the background. You can avoid this by using a very large distance value.

The color map is the crucial part of the rainbow since it contains all the colors that normally can be seen in
a rainbow. The color of the innermost color band is taken from the color map entry 0 while the outermost
band is take from entry 1. You should note that due to the limited color range any monitor can display it is
impossible to create a real rainbow. There are just some colors that you cannot display.

The filter channel of the rainbow’s color map is used in the same way as with fogs. It determines how much
of the light passing through the rainbow is filtered by the color.

The following example shows a simple scene with a ground plane, three spheres and a somewhat exagger-
ated rainbow fainbowl . pov).

#include "colors.inc"
camera {
location <0, 20, -100>
look_at <0, 25, 0>
angle 80
}
background { color SkyBlue }
plane { y, -10 pigment { color Green } }
light_source { <100, 120, 40> color White }
// declare rainbow’s colors

#declare r_violetl = color rgbf<1.0, 0.5, 1.0, 1.0>;
#declare r_violet2 = color rgbf<1.0, 0.5, 1.0, 0.8>;
#declare r_indigo = color rgbf<0.5, 0.5, 1.0, 0.8>;
#declare r_blue = color rgbf<0.2, 0.2, 1.0, 0.8>;
#declare r_cyan = color rgbf<0.2, 1.0, 1.0, 0.8>;
#declare r_green = color rgbf<0.2, 1.0, 0.2, 0.8>;
#declare r_yellow = color rgbf<1.0, 1.0, 0.2, 0.8>;
#declare r_orange = color rgbf<1.0, 0.5, 0.2, 0.8>;
#declare r_redl = color rgbf<1.0, 0.2, 0.2, 0.8>;
#declare r_red2 = color rgbf<1.0, 0.2, 0.2, 1.0>;
// create the rainbow
rainbow {

angle 42.5

width 5

distance 1.0e7

direction <-0.2, -0.2, 1>

jitter 0.01

color_map f{
[0.000 color r_violetl]
[0.100 color r_violet2]
[0.214 color r_indigo]
[0.328 color r_blue]
[0.442 color r_cyan]
[0.556 color r_green]
[0.670 <color r_yellow]
[0.784 <color r_orange]
[0.900 color r_redl]

}

Some irregularity is added to the color bands usingjtheer keyword.
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Figure 3.64: A colorful rainbow.

The rainbow in our sample is much too bright. You will never see a rainbow like this in reality. You can
decrease the rainbow’s colors by decreasing the RGB values in the color map.

Increasing the Rainbow’s Translucency

The result we have so far looks much too bright. Just reducing the rainbow’s color helps but it is much
better to increase the translucency of the rainbow because it is more realistic if the background is visible
through the rainbow.

We can use the transmittance channel of the colors in the color map to specify a minimum translucency,
just like we did with the fog. To get realistic results we have to use very large transmittance values as you
can see in the following exampleainbow2 . pov).

rainbow {
angle 42.5
width 5
distance 1.0e7
direction <-0.2, -0.2, 1>
jitter 0.01
color_map {

[0.000 color r_violetl transmit 0.98]
[0.100 color r_violet2 transmit 0.96]
[0.214 color r_indigo transmit 0.94]
[0.328 color r_blue transmit 0.92]
[0.442 color r_cyan transmit 0.90]
[0.556 color r_green transmit 0.92]
[0.670 <color r_yellow transmit 0.94]
[0.784 color r_orange transmit 0.96]
[0.900 color r_redl transmit 0.98]

The transmittance values increase at the outer bands of the rainbow to make it softly blend into the back-
ground.

The resulting image looks much more realistic than our first rainbow.
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Figure 3.65: A much more realistic rainbow.

Using a Rainbow Arc

Currently our rainbow has a circular shape, even though most of it is hidden below the ground plane. You
can easily create a rainbow arc by using 4¢he ang1e keyword with an angle below 360 degrees.

If you usearc_angle 120 for example you will get a rainbow arc that abruptly vanishes at the arc’s ends.
This does not look good. To avoid this thel10ff_angle keyword can be used to specify a region where
the arc smoothly blends into the background.

As explained in the rainbow’s reference section (see "Rainbow”) the arc extends fraanglez2 to arc
angle/2 while the blending takes place from -argle/2 to -falloffangle/2 and falloffangle/2 to arc
angle/2. This is the reason why thel10ff_angle has to be smaller or equal to the-_angle.

In the following examples we use an 120 degrees arc with a 45 degree falloff region on both sides of the arc
(rainbow3.pov).

rainbow {
angle 42.5
width 5
arc_angle 120
falloff_angle 30
distance 1.0e7
direction <-0.2, -0.2, 1>
jitter 0.01
color_map {

[0.000 color r_violetl transmit 0.98]
[0.100 color r_violet2 transmit 0.96]
[0.214 color r_indigo transmit 0.94]
[0.328 color r_blue transmit 0.92]
[0.442 color r_cyan transmit 0.90]
[0.556 color r_green transmit 0.92]
[0.670 color r_yellow transmit 0.94]
[0.784 color r_orange transmit 0.96]
[0.900 color r_redl transmit 0.98]

}

The arc angles are measured against the rainbows up direction which can be specified usikgyverd.
By default the up direction is the y-axis.

We finally have a realistic looking rainbow arc.
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Figure 3.66: A rainbow arc.

3.6 Simple Media Tutorial

Media in POV-Ray is a very versatile feature and can be used for a very diverse set of special effects such
as glows, smoke, dust, fog, etc. However, due to its versatility, media is not one of the easiest and simplest
features of POV-Ray and often requires experience for getting things to look good.

3.6.1 Types of media

There are three types of media in POV-Ray: Emitting, absorbing and scattering. They have the following
properties:

e Emitting: This is an additive media, which is handled as if it only emits light (note: it does not emit
light to its surroundings like aight_source does; this just describes how it affects the rays going
through it). That is, the color of the media is added to the color of the ray passing through it. Light
sources do not have any effect at all in it (ie. it does not affect shadows in any way).

¢ Absorbing: This is a substractive media. This media substracts (absorbs) its coloration from the ray
passing through it. Light sources are taken into account only in the shadow of the media (that is,
absorbing media casts a shadow).

e Scattering: This is the most advanced media type as it fully takes into account light passing through
it. That is, this media is lit by light sources (and thus, for example, nearby objects can cast shadows
into the scattering media).

Emitting and absorbing medias are the simplest and thus fastest ones. Emitting media can be used for things
like glows, lasers, sparkles and similar light-emitting effects. Absorbing media can be used for things like
smoke and fog (the difference between the feature of POV-Ray is that the density of an absorbing media

can be modified by a pattern and the media can be contained inside an object).

Scattering media is the more advanced and slower type. It is somewhat similar to absorbing media except
that it is fully lit by light sources. This can be used for smoke or fog with visible lightbeams and shadows.

3.6.2 Some media concepts

Media can be global to the whole universe, or it can be contained by an object. In the latter case the media
is defined in thenterior block of the object definition.
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For an object to be able to contain media (or to allow media from other objects or the global media inside
itself) it has to be defined as110w (& common mistake is to forget adding this keyword). If an object with

no media should not allow media inside itself (eg. a solid glass ball),iHfenrw should not be defined for

that object.

If media is defined in thenterior of an object or as a global media it will have a constant density throughout
the object/universe. However, a density pattern can be specified for non-uniform media. Also all kinds of
transformations can be applied to the media. This is specially useful for various effects (such as smoke with
certain shape).

3.6.3 Simple media examples
Emitting media

Let's start with a very simple scene showing an emitting media using a spherical density map. Emitting
media is used with thenission keyword followed by a color value. This color value tells the overall color
of the media:

global_settings { assumed_gamma 1 }

background { rgb 1 }

camera { location <3,4,-5>*.8 look_at 0 angle 35 }
light_source { <20,40,10>, 1 }

box // floor
{ <-1.5,-1.01,-1.5>, <1.5,-1.2,1.5>

pigment { checker rgb 0.75, rgb 0.25 scale 0.2 }
}

sphere // transparent sphere containing media
{ 0,1 pigment { rgbt 1 } hollow
interior
{ media
{ emission 1
density
{ spherical density_map
{ [0 rgb 0]
[0.4 rgb <1,0,0>]
[0.8 rgb <1,1,0>]
[1 rgb 1]

Note that thespherical pattern gets values from 0 in the outer surface of a unit sphere to 1 in the origin
(that is, the density with the index value 1 will be the density at the center of the media).

The color values in the density map tell what color the media is emitting at a certain point in the pattern.
That is, for example when the pattern gets the value 0.4, the media will be completely red at that place. If
the color is<o, 0, 0>, it means that the media does not emit any light at all in that location.

Note that the density map colors are multiplied by the color given with-thesion keyword; since 1 is
used in this case, the density map colors are not affected.

Thus, this will give us a media with a bright white center which fades to yellow and red at the outer limits
of the unit sphere:
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Figure 3.67: Simple emitting media example

As you can see from the image, the emitting media is invisible against white background. This is due to its
additive nature (any color added to pure white gives pure white). In fact, emitting media gives usually best
results for dark backgrounds.

Absorbing media

Modifying the previous example to use absorbing media is rather simple: Simply changei theon
keyword forabsorption. However, the colors we used above are not very illustrative for absorbing media,
so let’s change them a bit like this:

media
{ absorption 1
density
{ spherical density_map
{ [0 rgb 0]
[0.4 rgb 0]
[0.5 rgb <0,0.5,1>]
[1 rgb <0,1,1>]
}
}
}

Figure 3.68: Simple absorbing media example

The feature which we immediately notice in the image is that the media seems to be inverted from the colors
specified in the density map: Blueish colors were specified in the map, but the image shows a reddish media.
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This is perfectly normal and to be expected from the substractive nature of absorbing media: The media
actually absorbs the colors we specified in the density map. This means that for example specifying a white
color (<1,1,1>) in the density map will absorb all colors, thus resulting in a dark media.

Note how this media has a shadow: light rays passing through the media are absorbed.

Because of its substractive nature, absorbing media works well with light backgrounds and not very well
with dark ones.

Scattering media

Since scattering media fully takes light sources into account we need to make a slightly more complex scene
to see this. Let’s modify the above example by replacing the sphere with a box containing evenly distributed
scattering media, and a cylinder which will cast a shadow onto the media:

box
{ -1,1 pigment { rgbt 1 } hollow
interior
{ media
{ scattering { 1, 0.5 }
}
}
}
cylinder

{ <0.9, -1, 0.7>, <0.9, 0.9, 0.7>, 0.5
pigment { rgb <1, 0.8, 0.5> }
}

i

Figure 3.69: Simple scattering media example

(The effect may look a bit unnatural for a fog effect because the media is contained inside a box and the
cylinder is partially out of this box, but this is done to better visualize what is happening.)

The scattering keyword takes more parameters than the other two. The first number inside the curly
brackets is the scattering media type. In this example we used scattering media type 1. A full list of
scattering media types is given in the sectierattering of the Media reference.

The second parameter is the overall color of the media, similar to the parameter of the other two media
types.

An optional third parameter can be given with the inction keyword inside the curly brackets. This
keyword controls how fast the scattering media absorbs light and has to be used sometimes to get the
desired effect, such as when the media absorbs too much light.
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Tip: If you are getting a really dense or dark scattering media, try different values for the color and the
extinction value (usually values between 0 and 1). It is usually enough to play with these two values to get
the desired effect.

3.6.4 Multiple medias inside the same object

Emitting media works well with dark backgrounds. Absorbing media works well for light backgrounds.
But what if we want a media which works with both type of backgrounds?

One solution for this is to use both types of medias inside the same object. This is possible in POV-Ray.

Let’s take the very first example, which did not work well with the white background, and add a slightly
absorbing media to the sphere:

sphere
{ 0,1 pigment { rgbt 1 } hollow
interior
{ media
{ emission 1
density
{ spherical density_map
{ [0 rgb 0]
[0.4 rgb <1,0,0>]
[0.8 rgb <1,1,0>]
[1 rgb 1]
}
}
}
media
{ absorption 0.2
}
}
}

This will make the sphere not only add light to the rays passing through it, but also substract.

Figure 3.70: Emitting and absorbing media example

Multiple medias in the same object can be used for several other effects as well.
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3.6.5 Media and transformations

The density of a media can be modified with any pattern modifier, such as turbulence, scale, etc. This is a
very powerful tool for making diverse effects.

As an example, let's make an absorbing media which looks like smoke. For this we take the absorbing
media example and modify the sphere like this:

sphere
{ 0,1.5 pigment { rgbt 1 } hollow
interior
{ media
{ absorption 7
density
{ spherical density_map
{ [0 rgb 0]
[0.5 rgb 0]
[0.7 rgb .5]
[1 rgb 1]
}
scale 1/2
warp { turbulence 0.5 }
scale 2

}
}
scale <1.5,6,1.5> translate y

}

Figure 3.71: Media transformation example

A couple of notes:
The radius of the sphere is now a bit bigger than 1 because the turbulented pattern tends to take more space.
The absorption color can be larger than 1, making the absorption stronger and the smoke darker.

Note: When you scale an object containing media the media density is not scaled accordingly. This means
that if you for example scale a container object larger the rays will pass through more media than before,
giving a stronger result. If you want to keep the same media effect with the larger object, you will need to
divide the color of the media by the scaling amount.

The question of whether the program should scale the density of the media with the object is a question
of interpretation: For example, if you have a glass of colored water, a larger glass of colored water will
be more colored because the light travels a larger distance. This is how POV-Ray behaves. Sometimes,
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however, the object needs to be scaled so that the media does not change; in this case the media color needs
to be scaled inversely.

3.6.6 A more advanced example of scattering media

For a bit more advanced example of scattering media, let's make a room with a window and a light source
illuminating from outside the room. The room contains scattering media, thus making the light beam
coming through the window visible.

global_settings { assumed_gamma 1 }

camera { location <14.9, 1, -8> look_at -z angle 70 }
light_source { <10,100,150>, 1 }

background { rgb <0.3, 0.6, 0.9> }

// A dim light source inside the room which does not
// interact with media so that we can see the room:
light_source { <14, -5, 2>, 0.5 media_interaction off }

// Room
union
{ difference
{ box { <-11, -7, -11>, <16, 7, 10.5> }
box { <-10, -6, -10>, <15, 6, 10> }
box { <-4, -2, 9.9, <2, 3, 10.6> }
}
box { <-1.25, -2, 10>, <-0.75, 3, 10.5> }
box { <-4, 0.25, 10>, <2, 0.75, 10.5> }
pigment { rgb 1 }
}

// Scattering media box:
box
{ <=5, -6.5, -10.5>, <3, 6.5, 10.25>
pigment { rgbt 1 } hollow
interior
{ media
{ scattering { 1, 0.07 extinction 0.01 }
samples 30,100
}

}

As suggested previously, the scattering color and extinction values were adjusted until the image looked
good. In this kind of scene usually very small values are needed.

Note how the container box is quite smaller than the room itself. Container boxes should always be sized as
minimally as possible. If the box were as big as the room much higher values:fars would be needed
for a good result, thus resulting in a much slower rendering.

3.6.7 Media and photons

The photon mapping technique can be used in POV-Ray for making stunningly beautiful images with light
reflecting and refracting from objects. By default, however, reflected and refracted light does not affect
media. Making photons interact with media can be turned on withdhe: keyword in thephotons block
insideglobal_settings.
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Figure 3.72: More advanced scattering media example

To visualize this, let's make the floor of our room reflective so that it will reflect the beam of light coming
from the window.

Firstly, due to how photons work, we need to speegifytons { pass_through } in our scattering media
container box so that photons will pass through its surfaces.

Secondly, we will want to turn photons off for our fill-light since it's there only for us to see the interior of
the room and not for the actual lighting effect. This can be done by specifyiiigns { reflection off
} in that light source.

Thirdly, we need to set up the photons and add a reflective floor to the room. Let's make the reflection
colored for extra effect:

global_settings
{ photons
{ count 20000
media 100
}
}

// Reflective floor:

box

{ <-10, -5.99, -10>, <15, -6, 10>
pigment { rgb 1 }
finish { reflection <0.5, 0.4, 0.2> }
photons { target reflection on }

}

With all these fancy effects the render times start becoming quite high, but unfortunately this is a price
which has to be paid for such effects.

3.7 Radiosity

3.7.1 Introduction

Radiosity is a lighting technigue to simulate the diffuse exchange of radiation between the objects of a
scene. With a raytracer like POV-Ray, normally only the direct influence of light sources on the objects can
be calculated, all shadowed parts look totally flat. Radiosity can help to overcome this limitation. More
details on the technical aspects can be found in the reference section.
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Figure 3.73: Scattering media with photons example

To enable radiosity, you have to add a radiosity block to the glebtings in your POV-Ray scene file.
Radiosity is more accurate than simplistic ambient light but it takes much longer to compute, so it can be
useful to switch off radiosity during scene development. You can use a declared constant or an INI-file
constant and ani f statement to do this:

#declare RAD = off;

global_settings {
#if (RAD)
radiosity {

}
#end
}

Most important for radiosity are the ambient and diffuse finish components of the objects. Their effect
differs quite much from a conventionally lit scene.

e ambient: specifies the amount of light emitted by the object. This is the basis for radiosity without
conventional lighting but also in scenes with light sources this can be important. Since most materials
do not actually emit light, the default value of1 is too high in most cases. You can also change
ambientlight to influence this.

« diffuse: influences the amount of diffuse reflection of incoming light. In a radiosity scene this does
not only mean the direct appearance of the surface but also how much other objects are illuminated
by indirect light from this surface.

3.7.2 Radiosity with conventional lighting

The pictures here introduce combined conventional/radiosity lighting. Later on you can also find examples
for pure radiosity illumination.

The following settings are default, the result will be the same with an empty radiosity block:

global_settings {
radiosity {
pretrace_start 0.08
pretrace_end 0.04
count 35

nearest_count 5
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error_bound 1.8
recursion_limit 3

low_error_factor 0.5
gray_threshold 0.0
minimum_reuse 0.015

brightness 1

adc_bailout 0.01/2

The following pictures are rendered with default settings and are made to introduce the sample scene.
All objects except the sky have an ambient finish of 0.

Theambient 1 finish of the blue sky makes it functioning as some kind of diffuse light source. This leads
to a bluish touch of the whole scene in the radiosity version.

< B

no radiosity radiosity (default settings) difference w/o radiosity

You can see that radiosity much affects the shadowed parts when applied combined with conventional
lighting.

Changingorightness changes the intensity of radiosity effectsightness 0 would be the same as without
radiosity. brightness 1 should work correctly in most cases, if effects are too strong you can reduce this.
Larger values lead to quite strange results in most cases.

brightness 0.5 brightness 1.0 brightness 2.0

Changing therecursion_1imit value leads to the following results, second line are difference to default

(recursion_limit 3):

recursionlimit 1 recursionlimit 2 recursionlimit 5
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recursionlimit 1 (difference) recursionlimit 2 (difference) recursionlimit 5 (difference)

You can see that higher values than the default of 3 do not lead to much better results in such a quite simple
scene. In most cases values of 1 or 2 are sufficient.

Theerror bound value mainly affects the structures of the shadows. Values larger than the default of 1.8
do not have much effects, they make the shadows even flatter. Extremely low values can lead to very good
results, but the rendering time can become very long. For the following samplesion_limit 1 is used.

error.bound 0.01 error.bound 0.5 error.bound 1.0

error.bound 0.01 (difference) errorbound 0.5 (difference) errorbound 1.0 (difference)

Somewhat related t@-ror_bound iS low_error_factor. It reduces errabound during the last pretrace step.
Changing this can be useful to eliminate artefacts.

low_errorfactor 0.01 low_error_factor 0.5 low_errorfactor 1.0
-
low_error_factor 0.01 (difference) low_errorfactor 1.0 (difference)

The next samples usecursion_limit 1 anderror_bound 0.2. These 3 pictures illustrate the effect of
count. It is a general quality and accuracy parameter leading to higher quality and slower rendering at
higher values.
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count 2 count 35 (default) count 300

Another parameter that affects qualityhisirest _count. You can use values from 1 to 20, default is 5:

P

nearestcount 1 nearestcount 5 nearestcount 10

Again higher values lead to less artefacts and smoother appearance but slower rendering.

minimum_reuse influences whether previous radiosity samples are reused during calculation. It also affects
quality and smoothness.

minimum.reuse 0.2 minimum.reuse 0.015 minimum.reuse 0.005

minimumreuse 0.2 (difference) minimumreuse 0.005 (differ-
ence)

Another important value isretrace_end. It specifies how many pretrace steps are calculated and thereby
strongly influences the speed. Usually lower values lead to better quality, but it is important to keep this in
good relation t@rror_bound.

pretraceend 0.2 pretraceend 0.04 pretraceend 0.002

Strongly related t@retrace_end IS always_sample. Normally even in the final trace additional radiosity
samples are taken. You can avoid this by adding:ys_sample off. That is especially useful if you load
previously calculated radiosity data withad_file.
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alwayssample on alwayssample off alwayssample off (difference)

The effect ofmax_sample is similar tobrightness. It does not reduce the radiosity effect in general but
weakens samples with brightness above the specified value.

max.sample 0.5 max.sample 0.8 default

You can strongly affect things with the objects’ finishes. In fact that is the most important thing about
radiosity. Normal objects should have ambient finish 0 which is not default in POV-Ray and therefore
needs to be specified. Objects with ambier@ actually emit light.

Default finish values used until now aieffuse 0.65 ambient 0.

diffuse 0.65 ambient 0.2 diffuse 0.4 ambient 0 diffuse 1.0 ambient O

Finally you can vary the sky in outdoor radiosity scenes. In all these examples it is implemented with a
sphere objectfinish { ambient 1 diffuse 0 } was used until now. The following pictures show some
variations:

ambient O diffuse 1 ambient O diffuse O (no sky) yellow-blue gradient

3.7.3 Radiosity without conventional lighting
You can also leave out all light sources and have pure radiosity lighting. The situation then is similar to a
cloudy day outside, when the light comes from no specific direction but from the whole sky.

The following 2 pictures show what changes with the scene used in part 1, when the light source is removed.
(default radiosity, butecursion_limit 1 anderror_bound 0.2)
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with light source without light source

You can see that when the light source is removed the whole picture becomes very blue, because the scene
is illuminated by a blue sky, while on a cloudy day, the color of the sky should be somewhere between grey
and white.

The following pictures show the sample scene used in this part with different settingsfogion_1imit
(everything else default settings).

t N g

recursionlimit 1 recursionlimit 2 recursionlimit 3

This looks much worse than in the first part, because the default settings are mainly selected for use with
conventional light sources.

The next three pictures show the effeckofor bound. (recursion_limit iS 1 here) Without light sources,
this is even more important than with, good values much depend on the scenery and the other settings, lower
values do not necessarily lead to better results.

T ——

error.bound 1.8 error.bound 0.4 error.bound 0.02

If there are artefacts it often helps to increasent, it does affect quality in general and often helps
removing them (the following three pictures useor_bound 0.02).

Sk S

count 2 count 50 count 200

The next sequence shows the effechefrest_count, the difference is not very strong, but larger values
always lead to better results (maximum is 20). From now on all the pictures-tusebound 0.2
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nearesicount 2 nearesicount 5 (default) nearesicount 10

Theninimum_reuse is a geometric value related to the size of the render in pixel and affects whether previous
radiosity calculations are reused at a new point. Lower values lead to more often and therefore more accurate

calculations.
Q) E,

minimumreuse 0.001 minimumreuse 0.015 (default)minimum.reuse 0.1

In most cases it is not necessary to change sherror_factor. This factor reduces the errwound value
during the final pretrace stepretrace_end was lowered t@.01 in these pictures, the second line shows
the difference to default. Changing this value can sometimes help to remove persistent artefacts.

low_errorfactor 0.01 low_errorfactor 0.5 (default) low_errorfactor 1.0

low_error_factor 0.01 low_error_factor 1.0

gray-threshold reduces the color in the radiosity calculations. as mentioned above the blue sky affects
the color of the whole scene when radiosity is calculated. To reduce this coloring effect without affecting
radiosity in general you can increageyy_threshold. 1.0 means no color in radiosity at all.

gray.threshold 0.0 (default)  gray.threshold 0.5 gray.threshold 1.0

Another important parameter isetrace_end. Together with pretracstart it specifies the pretrace steps
that are done. Lower values lead to more pretrace steps and more accurate results but also to significantly
slower rendering.
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pretraceend 0.2 pretraceend 0.02 pretraceend 0.004

It is worth experimenting with the things affecting radiosity to get some feeling for how things work. The

next 3 images show some more experiments.
il
{ .K

ambient 3 instead of ambientatbient 0.5 instead of ambien¢®or.bound 0.04 recursiafimit
for one object for all objects sky: ambient0 2

Finally you can strongly change the appearance of the whole scene with the sky’s texture. The following
pictures give some example.

v N Sk

yellow-blue gradient from left tgght-dark gradient from left tight-dark gradient from bottom
right right to top

Really good results much depend on the single situation and how the scene is meant to look. Here is some
"higher quality” render of this particular scene, but requirements can be much different in other situations.

global_settings {
radiosity {
pretrace_start 0.08
pretrace_end 0.01
count 500

nearest_count 10
error_bound 0.02
recursion_limit 1

low_error_factor 0.2
gray_threshold 0.0
minimum_reuse 0.015
brightness 1

adc_bailout 0.01/2
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Figure 3.74: Higher quality radiosity scene

3.7.4 Normals and Radiosity

When using a normal statement in combination with radiosity lighting, you will see that the shadowed parts
of the objects are totally smooth, no matter how strong the normals are made.

The reason is that POV-Ray by default does not take the normal into account when calculating radiosity.
You can change this by addingrmal on to the radiosity block. This can slow things down quite a lot, but
usually leads to more realistic results if normals are used.

When using normals you should also remember that they are only faked irregularities and do not generate
real geometric disturbances of the surface. A more realistic approach is using an isosurface with a pigment
function, but this usually leads to very slow renders, especially if radiosity is involved.

normal off (default) normal on isosurface

You can see that the isosurface version does not have a natural smooth circumference and a more realistic
shadowline.

3.7.5 Performance considerations

Radiosity can be very slow. To some extend this is the price to pay for realistic lighting, but there are a lot
of things that can be done to improve speed.

The radiosity settings should be set as fast as possible. In most cases this is a quality vs. speed compromise.
Especiallyrecursion_l1imit should be kept as low as possible. Sometimisssufficient, if not2 or 3 should
often be enough.

With high quality settings, radiosity data can take quite a lot of memory. Apart from that the other scene
data is also used much more intensive than in a conventional scene. Therefore insufficient memory and
swapping can slow down things even more.

Finally the scene geometry and textures are important too. Objects not visible in the camera usually only
increase parsing time and memory use, but in a radiosity scene, also objects behind the camera can slow
down the rendering process.
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3.8 Making Animations

There are a number of programs available that will take a series of still image files (such as POV-Ray out-
puts) and assemble them into animations. Such programs can produce AVI, MPEG, FLI/FLC, QuickTime,
or even animated GIF files (for use on the World Wide Web). The trick, therefore, is how to produce the
frames. That, of course, is where POV-Ray comes in. In earlier versions producing an animation series
was no joy, as everything had to be done manually. We had to set the clock variable, and handle producing
unique file names for each individual frame by hand. We could achieve some degree of automation by using
batch files or similar scripting devices, but still, We had to set it all up by hand, and that was a lot of work
(not to mention frustration... imagine forgetting to set the individual file names and coming back 24 hours
later to find each frame had overwritten the last).

Now, at last, with POV-Ray 3, there is a better way. We no longer need a separate batch script or external
sequencing programs, because a few simple settings in our INI file (or on the command line) will activate an
internal animation sequence which will cause POV-Ray to automatically handle the animation loop details
for us.

Actually, there are two halves to animation support: those settings we put in the INI file (or on the command
line), and those code modifications we work into our scene description file. If we have already worked with
animation in previous versions of POV-Ray, we can probably skip ahead to the section "INI File Settings”
below. Otherwise, let’s start with basics. Before we get to how to activate the internal animation loop, let’s
look at a couple examples of how a couple of keywords can set up our code to describe the motions of
objects over time.

3.8.1 The Clock Variable: Key To It All

POV-Ray supports an automatically declared floating point variable identifiedoas (all lower case).

This is the key to making image files that can be automated. In command line operations, the clock variable
is set using thek switch. For example,+k3.4 from the command line would set the value of clock to 3.4.

The same could be accomplished from the INI file using:k=3.4 in an INI file.

If we do not set clock for anything, and the animation loop is not used (as will be described a little later)

the clock variable is still there - it is just set for the default value of 0.0, so it is possible to set up some POV
code for the purpose of animation, and still render it as a still picture during the object/world creation stage
of our project.

The simplest example of using this to our advantage would be having an object which is travelling at a
constant rate, say, along the x-axis. We would have the statement

translate <clock, 0, 0>

in our object’s declaration, and then have the animation loop assign progressively higher values to clock.
And that is fine, as long as only one element or aspect of our scene is changing, but what happens when we
want to control multiple changes in the same scene simultaneously?

The secret here is to use normalized clock values, and then make other variables in your scene proportional
to clock. That is, when we set up our clock, (we are getting to that, patience!) have it run from 0.0 to 1.0,
and then use that as a multiplier to some other values. That way, the other values can be whatever we need
them to be, and clock can be the same 0 to 1 value for every application. Let’s look at a (relatively) simple
example

#include "colors.inc"
camera {
location <0, 3, -6>
look_at <0, 0, 0>
}
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light_source { <20, 20, -20> color White }
plane {

v, 0
pigment { checker color White color Black }

}

sphere {
<0, 0, 0>, 1
pigment {
gradient x
color_map {
[0.0 Blue ]
[0.5 Blue ]
[0.5 White ]
[1.0 White ]

}

scale .25

}

rotate <0, 0, -clock*360>
translate <-pi, 1, 0>
translate <2*pi*clock, 0, 0>

}

Assuming that a series of frames is run with the clock progressively going from 0.0 to 1.0, the above code
will produce a striped ball which rolls from left to right across the screen. We have two goals here:

1. Translate the ball from point A to point B, and,

2. Rotate the ball in exactly the right proportion to its linear movement to imply that it is rolling — not
gliding — to its final position.

Taking the second goal first, we start with the sphere at the origin, because anywhere else and rotation will
cause it to orbit the origin instead of rotating. Throughout the course of the animation, the ball will turn
one complete 360 degree turn. Therefore, we used the foramate;10ck to determine the rotation in each
frame. Since clock runs 0 to 1, the rotation of the sphere runs from 0 degrees through 360.

Then we used the first translation to put the sphere at its initial starting point. Remember, we could not have
just declared it there, or it would have orbited the origin, so before we can meet our other goal (translation),
we have to compensate by putting the sphere back where it would have been at the start. After that, we
re-translate the sphere by a clock relative distance, causing it to move relative to the starting point. We
have chosen the formula of 2*pi* r*clock (the widest circumference of the sphere times current clock
value) so that it will appear to move a distance equal to the circumference of the sphere in the same time
that it rotates a complete 360 degrees. In this way, we have synchronized the rotation of the sphere to its
translation, making it appear to be smoothly rolling along the plane.

Besides allowing us to coordinate multiple aspects of change over time more cleanly, mathematically speak-
ing, the other good reason for using normalized clock values is that it will not matter whether we are doing
a ten frame animated GIF, or a three hundred frame AVI. Values of the clock are proportioned to the number
of frames, so that same POV code will work without regard to how long the frame sequence is. Our rolling
ball will still travel the exact same amount no matter how many frames our animation ends up with.

3.8.2 Clock Dependant Variables And Multi-Stage Animations

Okay, what if we wanted the ball to roll left to right for the first half of the animation, then change direction
135 degrees and roll right to left, and toward the back of the scene. We would need to make use of POV-
Ray’s new conditional rendering directives, and test the clock value to determine when we reach the halfway
point, then start rendering a different clock dependant sequence. But our goal, as above, it to be working in
each stage with a variable in the range of 0 to 1 (normalized) because this makes the math so much cleaner
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to work with when we have to control multiple aspects during animation. So let's assume we keep the same
camera, light, and plane, and let the clock run from 0 to 2! Now, replace the single sphere declaration with
the following...

#1if ( clock <=1
sphere { <0, 0, 0> , 1
pigment {
gradient x
color_map {
[0.0 Blue ]
[0.5 Blue ]
[0.5 White ]
[1.0 White ]
}
scale .25
}
rotate <0, 0, -clock*360>
translate <-pi, 1, 0>
translate <2*pi*clock, 0, 0>
}
felse
// (if clock is > 1, we’re on the second phase)
// we still want to work with a value from 0 - 1
#declare ElseClock = clock - 1;
sphere { <0, 0, 0>, 1
pigment {
gradient x
color_map {
[0.0 Blue ]
[0.5 Blue ]
[0.5 White ]
[1.0 White ]
}
scale .25
}
rotate <0, 0, ElseClock*360>
translate <-2*pi*ElseClock, 0, 0>
rotate <0, 45, 0>
translate <pi, 1, 0>

#end

If we spotted the fact that this will cause the ball to do an unrealsstap turnwhen changing direction,
bonus points for us - we are a born animator. However, for the simplicity of the example, let’s ignore that
for now. It will be easy enough to fix in the real world, once we examine how the existing code works.

All we did differently was assume that the clock would run 0 to 2, and that we wanted to be working with a
normalized value instead. So when the clock goes over 1.0, POV assumes the second phase of the journey
has begun, and we declare a new variahle.clock which we make relative to the original built in clock,

in such a way that while clock is going 1 to 2, Elseclock is going 0 to 1. So, even though there is only
one clock, there can be as many additional variables as we care to declare (and have memory for), so
even in fairly complex scenes, the single clock variable can be made the common coordinating factor which
orchestrates all other motions.
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3.8.3 The Phase Keyword

There is another keyword we should know for purposes of animationspnthe keyword. The phase
keyword can be used on many texture elements, especially those that can take a color, pigment, normal or
texture map. Remember the form that these maps take. For example:

color_map {
[0.00 White ]
[0.25 Blue ]
[0.76 Green ]
[1.00 Red ]

}

The floating point value to the left inside each set of brackets helps POV-Ray to map the color values to
various areas of the object being textured. Notice that the map runs cleanly from 0.0 to 1.0?

Phase causes the color values to become shifted along the map by a floating point value which follows the
keywordphase. Now, if we are using a normalized clock value already anyhow, we can make the variable
clock the floating point value associated with phase, and the pattern will smoothly shift over the course of
the animation. Let’s look at a common example using a gradient normal pattern

#include "colors.inc"
#include "textures.inc"
background { rgb<0.8, 0.8, 0.8> }
camera {
location <1.5, 1, -30>
look_at <0, 1, 0>
angle 10
}
light_source { <-100, 20, -100> color White }
// flag
polygon {
5, <0, 0>, <0, 1>, <1, 1>, <1, 0>, <0, 0>
pigment { Blue }
normal {
gradient x
phase clock
scale <0.2, 1, 1>
sine_wave
}
scale <3, 2, 1>
translate <-1.5, 0, 0>
}
// flagpole
cylinder {
<-1.5, -4, 0>, <-1.5, 2.25, 0>, 0.05
texture { Silver_ Metal }
}
// polecap
sphere {
<-1.5, 2.25, 0>, 0.1
texture { Silver_Metal }

}

Now, here we have created a simple blue flag with a gradient normal pattern on it. We have forced the
gradient to use a sine-wave type wave so that it looks like the flag is rolling back and forth as though
flapping in a breeze. But the real magic here is that phase keyword. It has been set to take the clock variable
as a floating point value which, as the clock increments slowly toward 1.0, will cause the crests and troughs
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of the flag’s wave to shift along the x-axis. Effectively, when we animate the frames created by this code, it
will look like the flag is actually rippling in the wind.

This is only one, simple example of how a clock dependant phase shift can create interesting animation
effects. Trying phase will all sorts of texture patterns, and it is amazing the range of animation effects we
can create simply by phase alone, without ever actually moving the object.

3.8.4 Do Not Use Jitter Or Crand

One last piece of basic information to save frustration. Because jitter is an element of anti-aliasing, we could
just as easily have mentioned this under the INI file settings section, but there are also forms of anti-aliasing
used in area lights, and the new atmospheric effects of POV-Ray, so now is as good a time as any.

Jitter is a very small amount of random ray perturbation designed to diffuse tiny aliasing errors that might
not otherwise totally disappear, even with intense anti-aliasing. By randomizing the placement of erroneous
pixels, the error becomes less noticeable to the human eye, because the eye and mind are naturally inclined
to look for regular patterns rather than random distortions.

This concept, which works fantastically for still pictures, can become a nightmare in animations. Because
it is random in nature, it will be different for each frame we render, and this becomes even more severe if
we dither the final results down to, say 256 color animations (such as FLC's). The result is jumping pixels
all over the scene, but especially concentrated any place where aliasing would normally be a problem (e.g.,
where an infinite plane disappears into the distance).

For this reason, we should always set jittepta in area lights and anti-aliasing options when preparing a
scene for an animation. The (relatively) small extra measure quality due to the use of jitter will be offset by
the ocean of jumpies that results. This general rule also applies to any truly random texture elements, such
aScrand.

3.8.5 INI File Settings

Okay, so we have a grasp of how to code our file for animation. We know about the clock variable, user
declared clock-relative variables, and the phase keyword. We know not to jitter or crand when we render a
scene, and we are all set build some animations. Alright, let’'s have at it.

The first concept we will need to know is the INI file settingsitial Frame andrinal Frame. These are

very handy settings that will allow us to render a particular number of frames and each with its own unique
frame number, in a completely hands free way. It is of course, so blindingly simple that it barely needs
explanation, but here is an example anyway. We just add the following lines to our favorite INI file settings

Initial_Frame = 1
Final_Frame = 20

and we will initiate an automated loop that will generate 20 unique frames. The settings themselves will
automatically append a frame number onto the end of whatever we have set the output file name for, thus
giving each frame an unique file number without having to think about it. Secondly, by default, it will
cycle the clock variable up from 0 to 1 in increments proportional to the number of frames. This is very
convenient, since, no matter whether we are making a five frame animated GIF or a 300 frame MPEG
sequence, we will have a clock value which smoothly cycles from exactly the same start to exactly the same
finish.

Next, about that clock. In our example with the rolling ball code, we saw that sometimes we want the clock
to cycle through values other than the default of 0.0 to 1.0. Well, when that is the case, there are setting for
that too. The format is also quite simple. To make the clock run, as in our example, from 0.0 to 2.0, we
would just add to your INI file the linesnitial Clock = 0.0
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Final_Clock = 2.0

Now, suppose we were developing a sequence of 100 frames, and we detected a visual glitch somewhere in
frames, say 51 to 75. We go back over our code and we think we have fixed it. We would like to render just
those 25 frames instead of redoing the whole sequence from the beginning. What do we change?

If we said makernitial Frame = 51, andFinal Frame = 75, we are wrong. Even though this would re-
render files named with numbers 51 through 75, they will not properly fit into our sequence, because the
clock will begin at its initial value starting with frame 51, and cycle to final value ending with frame 75.
The only timernitial Frame andrinal Frame should change is if we are doing an essentially new sequence
that will be appended onto existing material.

If we wanted to look at just 51 through 75 of the original animation, we need two new INI settings
Subset_Start_Frame = 51
Subset _End_Frame = 75

Added to settings from before, the clock will still cycle through its values proportioned from frames 1 to
100, but we will only be rendering that part of the sequence from the 51st to the 75th frames.

This should give us a basic idea of how to use animation. Although, this introductory tutorial does not cover
all the angles. For example, the last two settings we just saw, subset animation, can take fractional values,
like 0.5 to 0.75, so that the number of actual frames will not change what portion of the animation is being
rendered. There is also support for efficient odd-even field rendering as would be useful for animations
prepared for display in interlaced playback such as television (see the reference section for full details).

With POV-Ray 3 now fully supporting a complete host of animation options, a whole fourth dimension is
added to the raytracing experience. Whether we are making a FLIC, AVI, MPEG, or simply an animated
GIF for our web site, animation support takes a lot of the tedium out of the process. And do not forget
that phase and clock can be used to explore the range of numerous texture elements, as well as some of the
more difficult to master objects (hint: the julia fractal for example). So even if we are completely content
with making still scenes, adding animation to our repertoire can greatly enhance our understanding of what
POV-Ray is capable of. Adventure awaits!

3.9 While-loop tutorial

Usually people who have never programmed have great difficulties understanding how simple while-loops
work and how they should be used. When you get into nested loops, the problem is even worse.

Sometimes even people who have programmed a bit with some language get confused with POV-Ray’s
while-loops. This usually happens when they have only used a for-loop which in itself has an index variable
(which is often even incremented automatically).

3.9.1 What a while-loop is and what it is not

A while-loop in POV-Ray is just a control structure which tells POV-Ray to loop a command block while
the specified condition is true (ie. until it gets false).
That is, a while-loop is like this:

#while (condition)

#end
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The commands betweenhile and#end are run over and over as long as the condition evaluates to true.

A while-loop is not a for-loop nor any kind of loop which has an index variable by itself (which may be
incremented automatically in each loop).

The while-loopdoes notcare what the conditions are between the parentheses (as long as they evaluate to
some value) or what does the block betweeni1e and#end contain. It will just execute that block until
the condition becomes false.

The while-loop does not do anything else. You can think about it as a kind of "dumb” loop, which does not
do anything automatically (and this is not necessarily a bad thing).

3.9.2 How does a single while-loop work?

The while-loop works like this:

1. If the condition between the parentheses evaluates to false, jump to the command after the
statement. If the condition evaluates to true, just continue normally.

2. Atthe#end statement jump to thesile statement and start again.
That is:
* When POV-Ray gets to themhile statement it evaluates the condition between parentheses.
« If the statement evaluated to true then it will just continue normally with the next command.

* However, if the statement evaluated to false, POV-Ray will skip the entire body of the loop and
continue from the command after thend statement.

* At an #end statement POV-Ray will just jump back to the correspondiitg 1e-statement and then
continue normally (ie. testing the condition and so on).

Note that nowhere there is any mention about any index variable or anything else that could be used to
automatically end the loop or whatever. As said, it is just a "dumb” loop that continues forever if necessary,
only testing the statement between the parentheses (but it is not interested in what it is, only in its evaluated
value).

Although one could easily think that this kind of "dumb” loop is bad and it should be more "intelligent”

and better, the fact is that this kind of "dumb” loop is actually a lot more flexible and versatile. It allows
you to make things not possible or very difficult to do with an "intelligent” for-loop with automatic index

variables.

3.9.3 How do I make a while-loop?

It depends on what you are trying to make.

The most common usage is to use it as a simple for-loop, that is, a loop which loops a certain number of
times (for example 10 times) with an index value getting successive values (for example 1, 2, 3, ..., 10).

For this you need to first declare your index identifier with the first value. For example:
#declare Index = 1;

Now you want to loop 10 times. Remember how the condition worked: The while-loop loops as long as the
condition is true. So it should loop as long as our 'Index’ identifier is less or equal to 10:

#while (Index <= 10)
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When the ’'Index’ gets the value 11 the loop ends, as it should.

Now we only have to add 1 to 'Index’ at each loop, so we should do it at the end of the loop, thus getting:

#declare Index = 1;
#while (Index <= 10)

(some commands here)

#declare Index = Index + 1;

#end

The incrementation before thend is important. If we do not do it, 'Index’ would always have the value 1
and the loop would go forever since 1 is always less or equal to 10.

What happens here?
1.

First POV-Ray sets the value 1 to 'Index’.

2. Then it sees theshile statement and evaluates what is between the parentheses:<{adéx
3.
4

As 'Index’ has the value of 1 and<= 10, the condition evaluates to true.

. So, it just continues normally. It executes the commands followingthe e statement (denoted in

the above example as "(some commands here)”).

. Then it arrives normally to the last #declare command in the block. This causes the value 2 to be

assigned to 'Index’.

. Now it arrives the theéend command and so it just jumps to thenile.

. After that it executes the steps 2-6 again because also 2 is less or equal to 10.

. After this has been done 10 times, the value 11 is assigned to 'Index’ in the last command of the

block.

. Now, when POV-Ray evaluates the condition it sees that it is false (because 11 is not less or equal to

10.

10). This causes POV-Ray to jump to the command aftetdhe statement.

The net effect of all this is that POV-Ray looped 10 times and the 'Index’ variable got successive
values from 1 to 10 along the way.

If you read carefully the above description you will notice that the looping is done in a quite "dumb” way,
that is, there is no higher logic hidden inside the loop structure. In fact, POV-Ray does not have the slightest
idea how many times the loop is executed and what variable is used to count the loops. It just follows orders.

The higher logic in this type of loop is in the combination of commands we wrote. The effect of this
combination is that the loop works like a simple for-loop in most programming languages (like BASIC,

etc).

3.9.4 Whatis a condition and how do | make one?

A condition is an expression that evaluates to a boolean value (ie. true or false) and is used in POV-Ray in
#while-loops andkif-statements.

A condition is mainly a comparison between two values (although there are also some other ways of making
a condition, but that is not important now). For example:

v A

e
N =N

is true
is false
is true
is false
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and so on.

Usually it makes no sense to make comparisons like those. However, when comparing identifiers with some
value or two identifiers together it starts to be very useful. Consider this:

#if (version < 3.1)
#error "Wrong version!"
#end

If the identifier called 'version’ has a value which is less than 3.1#heor line will be executed. If
'version’ has a value which is 3.1 or greater, theror line is just skipped.

You can combine conditions together with the boolean operators & (and) and — (or). You can also invert
the value of a condition with ! (not).

For example, if you want something to be done when ’a’ is less thaan#iOb’ is greater or equal to 20,
the condition would be:

a<10 \& b>=20

For more information about these comparison operators, see the 'Float operators’ section of the POV-Ray
documentation.

3.9.5 What about loop types other than simple for-loops?

As POV-Ray does not care what the condition is and what we are using to make that condition, we can use
the while-loop in many other ways.

For example, this is a typical use of the while-loop which is not a simple for-loop:

#declare S = seed(0);
#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#while (vlength (Point) > 1)

#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#end

What we are doing here is this: Take a random point betwedn -1, -1> and<1, 1, 1> and if it is not
inside the unit sphere take another random point in that range. Do this until we get a point inside the unit
sphere.

This is not an unrealistic example since it is very handy.
As we see, this has nothing to do with an ordinary for-loop:
* It does not have any "index” value which gets consecutive values during the loop.
* We do not know how many times it will loop. In this case it loops a random number of times.

» For-loops are usually used to get a series of things (eg. objects). At each loop another instance of that
thing is created. Here, however, we are only interested in the value that iefseitthe loop, not the
values inside it.

As we can see, a while-loop can also be used for a task of type "calculate a value or some values until the
result is inside a specified range” (among many other tasks).

By the way, there is a variant of this kind of loop where the task is: "Calculate a value until the result is
inside a specified range, but make only a certain number of tries. If the value does not get inside that range
after that number of tries, stop trying”. This is used when there is a possibility for the loop for going on
forever.
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In the above example about the point inside the unit sphere we do not need this because the random point
will surely hit the inside of the sphere at some time. In some other situations, however, we cannot be so
sure.

In this case we need a regular index variable to count the number of loops. If we have made that amount of
loops then we stop.

Suppose that we wanted to modify our point searching program to be completely safe and to try only up to
10 times. If the point does not hit the inside of the sphere after 10 tries, we just give up and take the point
<0,0,0>.

#declare S = seed(0);
#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#declare Index = 1;
#while (Index <= 10 \& vlength(Point) > 1)
#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#declare Index = Index + 1;
#end

#if (vlength (Point) > 1)
#declare Point = <0,0,0>
#end

What did we do?

* We added an 'Index’ value which counts the amount of loops gone so far. It is quite similar to the
index loop of a simple for-loop.

» We added an extra condition to the while-loop: Besides testing that the point is outside the unit sphere
it also tests that our index variable has not bailed out. So now there are two conditions for the loop
to continue: The 'Index’ value must be less or equal tah@ the 'Point’ has to be outside the unit
sphere. If either one of them fails, the loop is ended.

» Then we check if the point is still outside the unit sphere. If it is, we just taB@®,0>.

Btw, sometimes it is not convenient to make the test again irtthestatement. There is another way of
determining whether the loop bailed out without successful termination or not: Since the loop ends when
the 'Index’ gets the value 11, we can use this to test the successfulness of the loop:

#if (Index = 11)
(loop was not successful)
#end

3.9.6 What about nested loops?

Even when one masters simple loops, nested loops can be a frightening thing (or at least hard to understand).

Nested loops are used for example for creating a 2D array of objects (with rows and columns of objects),
etc. For example if you want to create a 10x20 array of spheres in your scene, a nested loop is the tool for
it.

There is nothing special about nested loops. You only have to pay attention to where you initialize and
update your index variables.

Let’s recall the form of a simple for-loop:

#declare Index = initial_value;
#while (Index <= final_value)

[Something here]
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#declare Index = Index + index_step;
#end

The [Something here] part can be anything. If it is another while-loop, then we have nested loops. The
inner loop should have the same structure as the outer one.

Note that proper indentation helps us distinguishing between the loops. It is always a good idea to use a
good indentation scheme:

#declare Indexl = initial_valuel;
#while (Indexl <= final_valuel)

#declare Index2 = initial_value2;
#while (Index2 <= final_value2)

[Something here]

#declare Index2 = Index2 + index2_step;
#end

#declare Indexl = Indexl + indexl_step;
#end

It is a common mistake for beginners to break this structure. For example it is common to declare the
'Index2’ before the firstwhile. This breaks the for-loop structure and thus does not work. If you follow
step by step what POV-Ray does, as explained earlier, you will see why it does not work. Do not mix the
structures of the inner and the outer loops together or your code will simply not work as expected.

So, if we want to make our 10x20 array of spheres, it will look like this:

#declare Indexl = 0;
#while (Indexl <= 9)

#declare Index2 = 0;
#while (Index2 <= 19)

sphere { <Indexl, Index2, 0>, .5 }

#declare Index2 = Index2 + 1;
#end

#declare Indexl = Indexl + 1;
#end

Note how we now start from 0 and continue to 9 in the outer loop and from 0 to 19 in the inner loop. This
has been done to get the sphere array start from the origin (instead of starting fradn 0>). Of course

we could have made the 'Index1’ and 'Index2’ go from 1 to 10 and from 1 to 20 respectively and then
created the sphere in this way:

sphere { <Indexl-1, Index2-1, 0>, .5}

Although you should not mix the loop structures together, you can perfectly use the values of the outer loop
in the inner loop (eg. in its condition). For example, if we wanted to create a triangular array of spheres
instead of a rectangular one (that is, we create only half of the spheres), we could have made the inner
#while like this:

#while (Index2 < Index1*2)

('Index2’ will go from 0 to the value of 'Index1’ multiplied by 2.)
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There is no reason why we should limit ourselves to just two nested loops. There is virtually no limit how
many loops you can nest. For example, if we wanted to create a box-shape filled by spheres rows, colums
and depth, we just make three nested loops, one for the x-axis, another for the y-axis and the third for the
Z-axis.

3.9.7 Mixed-type nested loops

It is perfectly possible to put a for-loop inside a non-for-loop or vice-versa. Again, you just have to be
careful (with experience it gets easier).

For example, suppose that we want to create 50 spheres which are randomly placed inside the unit sphere.

So the distinction is clear: First we need a loop to create 50 spheres (a for-loop type suffices) and then we
need another loop inside it to calculate the location of the sphere. It will look like this:

#declare S = seed(0);
#declare Index = 1;
#while (Index <= 50)

#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#while (vlength (Point) > 1)

#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#end

sphere { Point, .1 }

#declare Index = Index + 1;
#end

There are some important things to note in this specific example:

« Although this is a nested loop, the sphere is not created in the inner loop but in the outer one. The
reason is clear; We want to create 50 spheres, so the sphere creation has to be inside the loop that
counts to 50. The inner loop just calculates an appropriate location.

» The seed value 'S’ is declared outside all the loops although it is used only in the inner loop. Can you
guess why? (Putting it inside the outer loop would have caused an undesired result: Which one?)

3.9.8 Other things to note
There is no reason why the index value in your simple for-loop should step one unit at a time. Since the

while-loop does not care how the index changes, you can change it in whichever way you want. Eg:

#declare Index = Index - 1; Decrements the index (be careful with the
while loop condition)

#declare Index = Index + 0.2; Increases by steps of 0.2
#declare Index = Index * 2; Doubles the value of the index at each step.

etc.
- Be carefulwhere you put your while-loop.
| have seen this kind of mistake more than once:

#declare Index = 1;
#while (Index <= 10)
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blob
{ threshold 0.6

sphere { <Index, 0, 0>, 2, 1 }
}

#declare Index = Index + 1;
#end

You will probably see immediately the problem.

This code creates 10 blobs with one component each. It does not seem to make much sense. Most probably
the user wanted to make one blob with 10 components.

Why did this mistake happen? It may be that the user (more or less subconsciously) thought that the while-
loop must be the outermost control structure and does not realize that while-loops can be anywhere, also
inside objects (creating subcomponents or whatever).

The correct code is, of course:

blob
{ threshold 0.6

#declare Index = 1;
#while (Index <= 10)

sphere { <Index, 0, 0>, 2, 1 }

#declare Index = Index + 1;
#end
}

The essential difference here is that it is only the sphere code which is run 10 times instead of the whole
blob code. The net result is the same as if we had written the sphere code 10 times with proper values of
‘Index’.

Be also careful with the placement of the braces. If you put them in the wrong place you can end up
accidentally repeating an opening or a closing brace 10 times. Again, a proper indentation usually helps a
lot with this (as seen in the above example).

- Tip: You can use while-loops in conjunction with arrays to automatize the creation of long lists of elements
with differing data.

Imagine that you are making something like this:

color_map

{ [0.00 rgb <.1,1,.6>]
[0.05 rgb <.8,.3,.6>]
[0.10 rgb <.3,.7,.9>]
[

0.15 rgb <1,.7,.3>]
and so on

It is tedious to have to write the same things over and over just changing the index value and the values in
the vector (even if you use copy-paste to copy the lines).

There is also one very big problem here: If you ever want to add a new color to the color map or remove a
color, you would have to renumber all the indices again, which can be extremely tedious and frustrating.

Would not it be nice to automatize the creation of the color map so that you only have to write the vectors
and that is it?

Well, you can. Using a while-loop which reads an array of vectors:
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#declare MyColors = array[20]
{ <.1,1,.6>, <.8,.3,.6>, <.3,.7,.9>,
<1,.7,.3>, ...
}

color_map

{ #declare LastIndex = dimension_size (MyColors, 1)-1;
#declare Index = 0;
#while (Index <= LastIndex)

[Index/LastIndex rgb MyColors[Index]]

#declare Index = Index + 1;
#end
}

Now it is easy to add, remove or modify colors in your color map. Just edit the vector array (remembering
to change its size number accordingly) and the while-loop will automatically calculate the right values and
create the color map for you.

3.10 SDL tutorial: A raytracer

You know you have been raytracing too long when ...
... You've been asked how you did that thing you did, by the author of the raytracer you used to do it.
— Alex McLeod

3.10.1 Introduction

A raytracer made with POV-Ray sounds really weird, doesn'’t it? What is it anyways? POV-Ray is already
a raytracer in itself, how can we use it to make a raytracer? What the...?

The idea is to make a simple sphere raytracer which supports colored spheres (with diffuse and specular
lighting), colored light sources, reflections and shadows with the POV-Ray SDL (Scene Description Lan-
guage), then just render the image created this way. That is, we do not use POV-Ray itself to raytrace the
spheres, but we make our own raytracer with its SDL and use POV-Ray’s raytracing part to just get the
image on screen.

What obscure idea could be behind this weirdness (besides a very serious case of YHBRFTLW...)? Why do
not just use POV-Ray itself to raytrace the spheres a lot faster and that is it?

The idea is not speed nor quality, but to show the power of the POV-Ray SDL. If you know how to make
such a thing as a raytracer with it, we can really grasp the expressive power of the SDL.

The idea of this document is to make a different approach to POV-Ray SDL teaching. It is intended to be a
different type of tutorial: Instead of starting from the basics and give simple and dumb examples, we jump
right into a high-end SDL code and see how it is done. However, this is done in a way that even beginners
can learn something from it.

Another advantage is that you will learn how a simple sphere raytracer is done by reading this tutorial.
There are lots of misconceptions about raytracing out there, and knowing how to make one helps clear most
of them.
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Although this tutorial tries to start from basics, it will go quite fast to very "high-end” scripting, so it might
not be the best tutorial to read for a completely new user, but it should be enough to have some basic
knowledge. Also more advanced users may get some new info from it.

Note: in some places some mathematics is needed, so you would better not be afraid of math.

If some specific POV-Ray SDL syntax is unclear you should consult the POV-Ray documentation for more
help. This tutorial explains how they can be used, not so much what is their syntax.

3.10.2 The idea and the code

The idea is to raytrace a simple scene consisting of spheres and light sources into a 2-dimensional array
containing color vectors which represents our "screen”.

After this we just have to put those colors on the actual scene for POV-Ray to show them. This is made by
creating a flat colored triangle mesh. The mesh is just flat like a plane with a color map on it. We could as
well have written the result to a format like PPM and then read it and apply it as an image map to a plane,
but this way we avoid a temporary file.

The following image is done with the raytracer SDL. It calculated the image at a resolution of 160x120
pixels and then raytraced an 512x384 image from it. This causes the image to be blurred and jagged
(because it is practically "zoomed in” by a factor of 3.2). Calculating the image at 320x240 gives a much
nicer result, but it is also much slower:

Figure 3.75: Some spheres raytraced by the SDL at 160x120

Note: there are no real spheres nor light sources here ("real” from the point of view of POV-Ray), just a flat
colored triangle mesh (like a plane with a pigment on it) and a camera, nothing else.

Here is the source code of the raytracer; we will look it part by part through this tutorial.

#declare ImageWidth = 160;

#declare ImageHeight = 120;
#declare MaxRecLev = 5;

#declare AmbientLight = <.2,.2,.2>;
#declare BGColor = <0,0,0>;

// Sphere information.
// Values are:
// Center, <Radius, Reflection, 0>, Color, <phong_size, amount, 0>
#declare Coord = array[5] [4]
{ {<-1.05,0,4>, <1,.5,0>, <1,.5,.25>, <40, .8, 0>}
{<1.05,0,4>, <1,.5,0>, <.5,1,.5>, <40, .8, 0>}
{<0,-3,5>, <2,.5,0>, <.25,.5,1>, <30, .4, 0>}
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{<-1,2.3,9>, <2,.5,0>, <.5,.3,.1>, <30, .4, 0>}
{<1.3,2.6,9>, <1.8,.5,0>, <.1,.3,.5>, <30, .4, 0>}

// Light source directions and colors:
#declare LVect = array[3][2]
{ {<-1, 0, -.5>, <.8,.4,.1>}

{<1, 1, -.5>, <1,1,1>}

{<0,1,0>, <.1,.2,.5>}

//
// Raytracing calculations:
//
#declare MaxDist = le5;

#declare ObjAmnt = dimension_size(Coord, 1);
#declare LightAmnt = dimension_size (LVect, 1);

#declare Ind = 0;

#while (Ind < LightAmnt)
#declare LVect[Ind] [0] = vnormalize (LVect[Ind][0]);
#declare Ind = Ind+1l;

#end

#macro calcRaySphereIntersection(P, D, spherelnd)
#local V = P-Coord[spherelInd] [0];
#local R = Coord[sphereInd] [1].x;

#local DV = vdot (D, V);

#local D2 = vdot (D, D);

#local SQ = DV*DV-D2* (vdot (V, V)-R*R);
#1f(SQ < 0) #local Result = -1;

telse
#local SQ = sqrt(sQ);
#local T1 = (-DV+SQ)/D2;
#local T2 = (-DV-SQ)/D2;
#local Result = (TI1<T2 2 Tl : T2);
#end
Result
#end

#macro Trace (P, D, reclev)
#local minT = MaxDist;
#local closest = ObjAmnt;

// Find closest intersection:
#local Ind = 0;
#while (Ind < ObjAmnt)
#local T = calcRaySpherelIntersection(P, D, Ind);
#if(T>0 \& T<minT)
#local minT = T;
#local closest = Ind;
#end
#local Ind = Ind+l;
#end
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// If not found, return background color:
#if (closest = ObjAmnt)
#local Pixel = BGColor;
#else
// Else calculate the color of the intersection point:
#local IP = P+minT*D;
#local R = Coord[closest][1].x;
#local Normal = (IP-Coord[closest][0])/R;

#local V = P-IP;
#local Refl = 2*Normal* (vdot (Normal, V)) - V;

// Lighting:

#local Pixel = AmbientLight;

#local Ind = 0;

#while (Ind < LightAmnt)
#local L = LVect[Ind][0];

// Shadowtest:
#local Shadowed = false;
#local Ind2 = 0;
#while (Ind2 < ObjAmnt)
#1f (Ind2!'=closest \& calcRaySphereIntersection(IP,L,Ind2)>0)
#local Shadowed = true;
#local Ind2 = ObjAmnt;
#end
#local Ind2 = Ind2+1;
#end

#1f (!Shadowed)
// Diffuse:
#local Factor = vdot (Normal, L);
#if (Factor > 0)
#local Pixel=Pixel+LVect[Ind][1]*Coord[closest] [2]*Factor;
#end

// Specular:
#local Factor = vdot (vnormalize(Refl), L);
#if (Factor > 0)
#local Pixel =
Pixel +
LVect [Ind] [1]*pow (Factor, Coord[closest][3].x)*
Coord[closest] [3].y;
#end
#end
#local Ind = Ind+l;
#end

// Reflection:
#if (recLev < MaxRecLev \& Coord[closest][1l].y > 0)
#local Pixel =
Pixel + Trace(IP, Refl, recLev+l)*Coord[closest][1l].y;
#end
#end

Pixel
#end
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#debug "Rendering...\n\n"
#declare Image = array|[ImageWidth] [ImageHeight]
#declare IndY = 0;
#while (IndY < ImageHeight)
#declare CoordY = IndY/(ImageHeight-1)*2-1;
#declare IndX = 0;
#while (IndX < ImageWidth)
#declare CoordX =
(IndX/ (ImageWidth-1)-.5) *2*ImageWidth/ImageHeight;
#declare Image[IndX][IndY] =
Trace (-z*3, <CoordX, CoordY, 3>, 1);
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#debug concat ("\rDone ", str(100*IndY/ImageHeight, 0, 1),
"\% (line ",str(IndY,0,0)," out of ",str(ImageHeight,0,0),")")

#end

#debug "\n"

//

// Image creation (colored mesh):
//

#default { finish { ambient 1 } }

#debug "Creating colored mesh to show image...\n"
mesh2
{ vertex_vectors
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while (IndY < ImageHeight)
#declare IndX = 0;
#while (IndX < ImageWidth)
<(IndX/ (ImageWidth-1)-.5) *ImageWidth/ImageHeight*2,
IndY/ (ImageHeight-1)*2-1, 0>,
<((IndX+.5)/ (ImageWidth-1)-.5) *ImageWidth/ImageHeight*2,
(IndY+.5)/ (ImageHeight-1) *2-1, 0>
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1l;
#end
}
texture_list
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while (IndY < ImageHeight)
#declare IndX = 0;
#while (IndX < ImageWidth)
texture { pigment { rgb Image[IndX][IndY] } }
#1f(IndX < ImageWidth-1 \& IndY < ImageHeight-1)
texture { pigment { rgb
(Image[IndX] [IndY]+Image[IndX+1] [IndY]+
Image [IndX] [IndY+1]+Image [IndX+1] [IndY+1])/4 } }
#telse
texture { pigment { rgb 0 } }
#end
#declare IndX = IndX+1;
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#end
#declare IndY = IndY+1;
#end
}
face_indices
{ (ImageWidth-1)* (ImageHeight-1)*4,
#declare IndY = 0;
#while (IndY < ImageHeight-1)
#declare IndX = 0;
#while (IndX < ImageWidth-1)
<IndX*2+ IndY * (ImageWidth*2
IndX*2+42+IndY * (ImageWidth*2
IndX*2+1+IndY * (ImageWidth*2
IndX*2+ IndY * (ImageWidth*2
(
(

r
>7
IndX*2+2+IndY * (ImageWidth*2
IndX*2+1+IndY * (ImageWidth*2

’

’

<IndX*2+ IndY * (ImageWidth*2),
IndX*2+ (IndY+1)* (ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2) >,
IndX*2+ IndY * (ImageWidth*2),
IndX*2+ (IndY+1)* (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2),

<IndX*2+ (IndY+1l)* (ImageWidth*2),
IndX*2+2+ (IndY+1) * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2)>,
IndX*2+ (IndY+1)* (ImageWidth*2),
IndX*2+2+ (IndY+1) * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2),

<IndX*2+2+IndY * (ImageWidth*2),
IndX*2+2+ (IndY+1) * (ImageWidth*2
IndX*2+1+IndY * (ImageWidth*2
(
(

)
)l
) >
IndX*2+2+IndY * (ImageWidth*2),
)
)

r
IndX*2+2+ (IndY+1) * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2

#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#end

camera { orthographic location -z*2 look_at 0 }

3.10.3 Short introduction to raytracing
Before we start looking at the code, let’s look briefly how raytracing works. This will help you understand
what the script is doing.

The basic idea of raytracing is to "shoot” rays from the camera towards the scene and see what does the ray
hit. If the ray hits the surface of an object then lighting calculations are performed in order to get the color
of the surface at that place.

The following image shows this graphically:
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Figure 3.76: The basic raytracing algorithm

First a ray is "shot” in a specified direction to see if there is something there. As this is solved mathemat-
ically, we need to know the mathematical representation of the ray and the objects in the scene so that we
can calculate where does the ray intersect the objects. Once we get all the intersection points, we choose
the closest one.

After this we have to calculate the lighting (ie. the illumination) of the object at the intersection point. In the
most basic lighting model (as the one used in the script) there are three main things that affect the lighting
of the surface:

» The shadow test ray, which determines whether a light source illuminates the intersection point or
not.

» The normal vector, which is a vector perpendicular (ie. at 90 degrees) to the object surface at the
intersection point. It determines the diffuse component of the lighting as well as the direction of the
reflected ray (in conjunction with the incoming ray; that is, the angle alpha determines the direction
of the reflected ray).

» The reflected ray, which determines the specular component of the lighting and of course the color of
the reflection (if the object is reflective).

Do not worry if these things sound a bit confusing. Full details of all these things will be given through
this tutorial, as we look what does the raytracing script do. The most important thing at this stage is to
understand how the basic raytracing algorithm works at theoretical level (the image above should say most
of it).

Let’s just look at the raytracer source code line by line and look what does it do

3.10.4 Global settings

#declare ImageWidth = 160;

#declare ImageHeight = 120;
#declare MaxRecLev = 5;

#declare AmbientLight = <.2,.2,.2>;
#declare BGColor = <0,0,0>;

These lines just declare some identifiers defining some general values which will be used later in the code.
The keyword we use here i8eclare and it means that we are declaring a global identifier, which will be
seen in the whole code.

As you can see, we declare some identifiers to be of float type and others to be of vector type. The vector
type identifiers are, in fact, used later for color definition (as their name implies).

The magewidth andimageHeight define the resolution of the image we are going to render.

Note: this only defines the resolution of the image we are going to render in our SDL (ie. into the array we
will define later); it does not set the resolution of the image which POV-Ray will render.
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TheMaxrecLev limits the maximum number of recursive reflections the code will calculate. It is equivalent
to themax_trace_level value inglobal_settings which POV-Ray uses to raytrace.

The rambientLight defines a color which is added to all surfaces. This is used to "lighten up” shadowed
parts so that they are not completely dark. It is equivalent taithesnt _1ight value inglobal_settings.

Finally, Bccolor defines the color of the rays which do not hit anything. It is equivalent te4bieyround
block of POV-Ray.

3.10.5 Scene definition

// Sphere information.
// Values are:
// Center, <Radius, Reflection, 0>, Color, <phong_size, amount, 0>
#declare Coord = array([5][4]
{ {<-1.05,0,4>, <1,.5,0>, <1,.5,.25>, <40, .8, 0>}
(<1.05,0,4>, <1,.5,0>, <.5,1,.5>, <40, .8, 0>}
{<0,-3,5>, <2,.5,0>, <.25,.5,1>, <30, .4, 0>}
{<-1,2.3,9>, <2,.5,0>, <.5,.3,.1>, <30, .4, 0>}
{<1.3,2.6,9>, <1.8,.5,0>, <.1,.3,.5>, <30, .4, 0>}
}

// Light source directions and colors:
#declare LVect = array[3][2]
{ {<-1, 0, =-.5>, <.8,.4,.1>}
{<1, 1, -.5>, <1,1,1>}
{<0,1,0>, <.1,.2,.5>}
}

Here we use a bit more complex declarations: Array declarations.

In fact, they are even more complex than simple arrays, as we are declaring two-dimensional arrays.
A simple one-dimensional array can be declared like:

#declare MyArray = array[4] { 1, 2, 3, 4}

and then values can be read from inside it with for examplezray (2] (which will return3 in this case as
the indexing starts from 0, ie. the index 0 gets the first value in the array).

A two-dimensional array can be thought as an array containing arrays. That is, if yatrsay3] (2], that

means "an array which has 3 elements; each one of those elements is an array with 2 elements”. When you
want to read a value from it, for examplearray (1] (3], you can think about it as "get the fourth value

from the second array” (as indexing starts from 0, then the index value 3 actually means "fourth value”).

Note: although you can put almost anything inside an array (floats, vectors, objects and so on) you can

only put one type of things inside an array. That is, you cannot mix float values and objects inside the same
array. (One nice feature is that all POV-Ray objects are considered equivalent, which means that an object
array can contain any objects inside it.)

What we are doing here is to define the information for our spheres and light sources. The first array (called
coord) defines the information for the spheres and the seconrdt) defines the light sources.

For spheres we define their center as the first vector. The second vector has both the radius of the sphere
and its reflection amount (which is equivalent to the&lection value in thefinish block of an object).

This is a trick we use to not to waste so much space, so we use two values of the same vector for defining
two different things.

The third vector defines the color of the sphere and the fourth the specular component of the lighting
(equivalent tohong_size andphong values in thecinish block of an object).
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The light source definition array contains direction vectors and colors. This means that the light sources are
directional, that is, they just say which direction the light is coming from. It could have been equally easy
to make point lights, though.

We will use the information inside these arrays later in order to raytrace the scene they define.

3.10.6 Initializing the raytracer

#declare MaxDist = leb5;
#declare ObjAmnt = dimension_size(Coord, 1);
#declare LightAmnt = dimension_size (LVect, 1);

#declare Ind = 0;

#while(Ind < LightAmnt)
#declare LVect[Ind] [0] = vnormalize (LVect[Ind][0]);
#declare Ind = Ind+l;

#end

Before being able to start the raytracing, we have to intialize a couple of things.

ThewMaxpist defines the maximum distance a surface can be from the starting point of a ray. This means
that if a surface is farther away from the starting point of the ray than this value, it will not be seen. Strictly
speaking this value is unnecessary and we can make the raytracer so that there is no such a limitation, but
we save one extra step when we do it this way, and for scenes sized like ours it does not really matter. (If
you really, really want to get rid of the limitation, | am sure you will figure out yourself how to do it after

this tutorial.)

Theobjamnt andLightamnt identifiers are declared just to make it easier for us to see how many objects and
lights are there (we need this info to loop through all the objects and lights). Callingrthesion_size ()
function is a really nice way of getting the number of items in an array.

All right, now we are getting to a bit more advanced stuff: What does the while-loop do there?

The #while-loop uses thend identifier as an index value going fromo LightAmnt-1 (yes,-1; whenind

gets the valueightamnt the loop is ended right away). We also see that we are indexingvthe array;

thus, it is clear we are going through all the light sources (specifically through their direction vectors, as we
only use the[o] part) and we assign something to them.

What we are doing is to assign a normalized version of each light source direction onto themselves, that is,
just normalizing them.

Normalize is a synonym for "convert to unit vector”, that is, convert to a vector with the same direction as
the original but with length 1.

Why? We will later see that for illumination calculations we will be needing unit vectors. It is more efficient
to convert the light source directions to unit vectors once at the beginning than every time for each pixel
later.

3.10.7 Ray-sphere intersection

#macro calcRaySphereIntersection(P, D, spherelInd)
#local V = P-Coord[sphereInd] [0];
#local R = Coord[sphereInd] [1].x;

#local DV = vdot (D, V);
#local D2 = vdot (D, D);
#local SQ = DV*DV-D2* (vdot (V, V)-R*R);
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#if (SQ < 0) #local Result = -1;

#telse
#local SQ = sqrt(sQ);
#local T1 = (-DV+SQ)/D2;
#local T2 = (-DV-SQ)/D2;
#local Result = (TI1<T2 2 Tl : T2);
#end
Result
#end

This is the core of the whole raytracing process.

First let's see how a macro works (if you know it, just skip the following section):

Inner workings of a #macro

A macro works like a substitution command (similar to the #define macros in the C programming language).
The body of the macro is in practice inserted in the place where the macro is called. For example you can
use a macro like this:

#macro UnitSphere ()
sphere { 0,1 }
#end

object { UnitSphere() pigment { rgb 1 } }
The result of this code is, in effect, as if you had written:
object { sphere { 0,1 } pigment { rgb 1 } }

Of course there is no reason in making this, as you could have just #declaredtheere as a sphere of
radius 1. However, the power of macros kick in when you start using macro parameters. For example:

#macro Sphere (Radius)
sphere { 0, Radius }
#end

object { Sphere(3) pigment { rgb 1 } }

Now you can use the macphere to create a sphere with the specified radius. Of course this does not
make much sense either, as you could just write the sphere primitive directly because it is so short, but
this example is intentionally short to show how it works; the macros become very handy when they create
something much more complicated than just a sphere.

There is one important difference between macros in POV-Ray and real substitution macras.o&ny
statement inside the macro definition will be parsed at the visibility level of the macro only, that is, it will
have no effect on the environment where the macro was called from. The following example shows what |
am talking about:

#macro Sphere (Radius)

#local Color = <1,1,1>;

sphere { 0, Radius pigment { rgb Color } }
#end

#declare Color = <1,0,0>;
object { Sphere(3) }

// 'Color’ is still <1,0,0> here,

// thus the following box will be red:
box { -1,1 pigment { rgb Color } }
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In the example above, although the macro creates a local identifier calletland there is an identifier
with the same name at global level, the local definition does not affect the global one. Also even if there
was not any global definition ab1or, the one inside the macro is not seen outside it.

There is one important exception to this, and this is one of the most powerful features of macros (thanks to
this they can be used as if they were functions): If an identifier (be it local or global) appears alone in the

body of a macro (usually at the end), its value will be passed outside the macro (as if it was a return value).
The following example shows how this works:

#macro Factorial (N)
#local Result = 1;
#local Ind = 2;
#while (Ind <= N)
#local Result = Result*Ind;
#local Ind = Ind+l;
#end
Result
#end

#declare Value = Factorial(5);

Although the identifieresult is local to the macro, its value is passed as if it was a return value because
of the last line of the macro (wheresult appears alone) and thus the identifierue will be set to the
factorial of 5.

The ray-sphere intersection macro

Here is again the macro at the beginning of the page so that you do not have to scroll so much in order to
see it:

#macro calcRaySpherelntersection(P, D, spherelnd)
#local V = P-Coord[spherelInd] [0];
#local R = Coord[spherelInd] [1].x;

#local DV = vdot (D, V);

#local D2 = vdot (D, D);

#local SQ = DV*DV-D2* (vdot (V, V)-R*R);
#if (SQ < 0) #local Result = -1;

telse
#local SQ = sqrt(SQ);
#local Tl = (-DV+SQ)/D2;
#local T2 = (-DV-SQ)/D2;
#local Result = (TI<T2 2 Tl : T2);
#end
Result
#end

The idea behind this macro is that it takes a starting point (ie. the starting point of the ray) a direction vector
(the direction where the ray is shot) and an index to the sphere definition array defined previously. The
macro returns a factor value; this value expresses how much we have to multiply the direction vector in
order to hit the sphere.

This means that if the ray hits the specified sphere, the intersection point will be located at:
StartingPoint + Result*Direction

The return value can be negative, which means that the intersection point was actually behind the starting
point. A negative value will be just ignored, as if the ray did not hit anything. We can use this to make
a little trick (which may seem obvious when said, but not so obvious when you have to figure it out for
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yourself): If the ray actually does not hit the sphere, we return just a negative value (does not really matter
which).

And how does the macro do it? What is the theory behind those complicated-looking mathematical expres-
sions?

I will use a syntax similar to POV-Ray syntax to express mathematical formulas here since that is probably
the easiest way of doing it.

Let’s use the following letters:

p = Starting point of the ray
D = Direction of the ray

¢ = Center of the sphere

R = Radius of the sphere

The theory behind the macro is that we have to see what is the véuavhich holds that:
vlength (P+T*D-C) = R

This means: The length of the vector between the center of the spharmd(the intersection point{T+p)
is equal to the radius]j.

If we use an additional letter so that:

vV = P-C

then the formula is reduced to:

vlength (T*D+V) = R

which makes our life easier. This formula can be opened as:
(T*DxtVx) 2 + (T*DytVy)2 + (T*Dy+Vz)2 - RZ = 0

Solving T from that is rather trivial math. We get a 2nd order polynomial which has two solutions (I will
use the *” symbol to represent the dot-product of two vectors):

T = (-D-V % sqrt ((D-V)2 - D2(v2-R?))) / D2
Note: 2 means actually-p)

When the discriminant (ie. the expression inside the square root) is negative, the ray does not hit the sphere
and thus we can return a negative value (the macro returns -1). We must check this in order to avoid the
square root of a negative numberror; as it has a very logical meaning in this case, the checking is natural.

If the value is positive, there are two solutions (or just one if the value is zero, but that does not really matter
here), which corresponds to the two intersection points of the ray with the sphere.

As we get two values, we have to return the one which is smaller (the closest intersection). This is what this
portion of the code does:

#local Result = (T1<T2 ? Tl : T2);

Note: this is an incomplete algorithm: If one value is negative and the other positive (this happens when
the starting point is inside the sphere), we would have to return the positive one. The way it is now results
in that we will not see the inner surface of the sphere if we put the camera inside one.

For our simple scene this is enough as we do not put our camera inside a sphere nor we have transparent
spheres. We could add a check there which looks if one of the values is positive and the other negative and
returns the positive one. However, this has an odd and very annoying result (you can try it if you want).
This is most probably caused by the inaccuracy of floating point numbers and happens when calculating
reflections (the starting point is exactly on the surface of the sphere). We could correct these problems by
using epsilon values to get rid of accuracy problems, but in our simple scene this will not be necessary.
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3.10.8 The Trace macro

#macro Trace (P, D, recLev)

If the ray-sphere intersection macro was the core of the raytracer, then the Trace-macro is practically
everything else, the "body” of the raytracer.

The Trace-macro is a macro which takes the starting point of a ray, the direction of the ray and a recursion
count (which should always be 1 when calling the macro from outside; 1 could be its default value if
POV-Ray supported default values for macro parameters). It calculates and returns a color for that ray.

This is the macro we call for each pixel we want to calculate. That is, the starting point of the ray is our
camera location and the direction is the direction of the ray starting from there and going through the "pixel”
we are calculating. The macro returns the color of that pixel.

What the macro does is to see which sphere (if any) does the ray hit and then calculates the lighting for that
intersection point (which includes calculating reflection), and returns the color.

The Trace-macro ieecursive meaning that it calls itself. More specifically, it calls itself when it wants to
calculate the ray reflected from the surface of a sphererddiev value is used to stop this recursion when
the maximum recursion level is reached (ie. it calculates the reflection onlytiév < MaxRecLev).

Let’s examine this relatively long macro part by part:

Calculating the closest intersection

#local minT = MaxDist;
#local closest = ObjAmnt;

// Find closest intersection:

#local Ind = 0;
#while (Ind < ObjAmnt)
#local T = calcRaySpherelntersection(P, D, Ind);

#1f(T>0 \& T<minT)
#local minT = T;
#local closest = Ind;

#end

#local Ind = Ind+1;

#end

A ray can hit several spheres and we need the closest intersection point (and to know which sphere does it
belong to). One could think that calculating the closest intersection is rather complicated, needing things
like sorting all the intersection points and such. However, it is quite simple, as seen in the code above.

If we remember from the previous part, the ray-sphere intersection macro returns a factor value which tells
us how much do we have to multiply the direction vector in order to get the intersection point. What we do
is just to call the ray-sphere intersection macro for each sphere and take the smallest returned value (which
is greater than zero).

First we initialize theninT identifier, which will hold this smallest value to something big (this is where we
need theraxpist value, although modifying this code to work around this limitation is trivial and left to the
user). Then we go through all the spheres and call the ray-sphere intersection macro for each one. Then we
look if the returned value was greater than 0 and smallerthan and if so, we assign the valueronT.

When the loop ends, we have the smallest intersection point in it.

Note: we also assign the index to the sphere which the closest intersection belongs tocinshe
identifier.
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Here we use a small trick, and it is related to its initial valugiannt. Why did we initialize it to that? The
purpose of it was to initialize it to some value which is not a legal index to a sphieyenfit is not a legal

index as the indices go from 0 t6j2mnt-1); a negative value would have worked as well, it really does not
matter. If the ray does not hit any sphere, then this identifier is not changed and so we can see it afterwards.

If the ray doesn't hit anything

// If not found, return background color:
#if (closest = ObjAmnt)
#local Pixel = BGColor;

If the ray did not hit any sphere, what we do is just to return the bacground color (defined fayther
identifier).

Initializing color calculations

Now comes one of the most interesting parts of the raytracing process: How do we calculate the color of
the intersection point?

First we have to pre-calculate a couple of things:

telse
// Else calculate the color of the intersection point:
#local IP = P+minT*D;
#local R = Coord[closest][1].x;
#local Normal = (IP-Coord[closest][0])/R;

#local V = P-IP;
#local Refl = 2*Normal* (vdot (Normal, V)) - V;

Naturally we need the intersection point itself (needed to calculate the normal vector and as the starting
point of the reflected ray). This is calculated into ttreidentifier with the formula which | have been
repeating a few times during this tutorial.

Then we need the normal vector of the surface at the intersection point. A normal vector is a vector
perpendicular (ie. at 90 degrees) to the surface. For a sphere this is very easy to calculate: It is just the
vector from the center of the sphere to the intersection point.

Note: we normalize it (ie. convert it into a unit vector, ie. a vector of length 1) by dividing it by the radius
of the sphere. The normal vector needs to be normalized for lighting calculation.

Now a tricky one: We need the direction of the reflected ray. This vector is of course needed to calculate
the reflected ray, but it is also needed for specular lighting.

This is calculated into theef1 identifier in the code above. What we do is to take the vector from the
intersection point to the starting poimt-(r) and "mirror” it with respect to the normal vector. The formula
for "mirroring” a vectorv with respect to a unit vector (let's callakis) is:

MirroredV = 2*Axis* (Axis-V) - V

(We could look at the theory behind this formula in more detail, but let’s not go too deep into math in this
tutorial, shall we?)

Going through the light sources

// Lighting:
#local Pixel = AmbientLight;
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#local Ind = 0;
#while (Ind < LightAmnt)
#local L = LVect[Ind][0];

Now we can calculate the lighting of the intersection point. For this we need to go through all the light
sources.

Note: Lcontains the direction vector which points towards the light source, not its location.

We also initialize the color to be returnet ¢e1) with the ambient light value (given in the global settings
part). The goal is to add colors to this (the colors come from diffuse and specular lighting, and reflection).

Shadow test

The very first thing to do for calculating the lighting for a light source is to see if the light source is
illuminating the intersection point in the first place (this is one of the nicest features of raytracing: shadow
calculations are laughably easy to do):

// Shadowtest:
#local Shadowed = false;
#local Ind2 = 0;
#while (Ind2 < ObjAmnt)
#1f (Ind2!=closest \& calcRaySphereIntersection (IP,L,nd2)>0)
#local Shadowed = true;
#local Ind2 = ObjAmnt;
#end
#local Ind2 = Ind2+1;
#end

What we do is to go through all the spheres (we skip the current sphere although it is not necessary, but
a little optimization is still a little optimization), take the intersection point as starting point and the light
direction as the direction vector and see if the ray-sphere intersection test returns a positive value for any of
them (and quit the loop immediately when one is found, as we do not need to check the rest anymore).

The result of the shadow test is put into thedowed identifier as a boolean valuerf:e if the point is
shadowed).

Diffuse lighting

The diffuse component of lighting is generated when a light ray hits a surface and it is reflected equally to
all directions. The brightest part of the surface is where the normal vector points directly in the direction of
the light. The lighting diminishes in relation to the cosine of the angle between the normal vector and the
light vector.

#1f (!Shadowed)
// Diffuse:
#local Factor = vdot (Normal, L);
#if (Factor > 0)
#local Pixel =
Pixel + LVect[Ind][1]*Coord[closest][2]*Factor;
#end

The code for diffuse lighting is surprisingly short.

There is an extremely nice trick in mathematics to get the cosine of the angle between two unit vectors: It
is their dot-product.
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What we do is to calculate the dot-product of the normal vector and the light vector (both have been
normalized previously). If the dot-product is negative it means that the normal vector points in the opposite
direction than the light vector. Thus we are only interested in positive values.

Thus, we add to the pixel color the color of the light source multiplied by the color of the surface of the
sphere multiplied by the dot-product. This gives us the diffuse component of the lighting.

Specular lighting

The specular component of lighting comes from the fact that most surfaces do not reflect light equally to
all directions, but they reflect more light to the "reflected ray” direction, that is, the surface has some mirror
properties. The brightest part of the surface is where the reflected ray points in the direction of the light.

Photorealistic lighting is a very complicated issue and there are lots of different lighting models out there,
which try to simulate real-world lighting more or less accurately. For our simple raytracer we just use a
simple Phong lighting model, which suffices more than enough.

// Specular:
#local Factor = vdot (vnormalize(Refl), L);
#if (Factor > 0)
#local Pixel = Pixel + LVect[Ind][1]*
pow (Factor, Coord[closest][3].x)*
Coord[closest] [3].y;
#end

The calculation is similar to the diffuse lighting with the following differences:
* We do not use the normal vector, but the reflected vector.
» The color of the surface is not taken into account (a very simple Phong lighting model).

» We do not take the dot-product as is, but we raise it to a power given in the scene definition ("phong
size”).

» We use a brightness factor given in the scene definition to multiply the color ("phong amount”).

Thus, the color we add to the pixel color is the color of the light source multiplied by the dot-product (which
is raised to the given power) and by the given brightness amount.

Then we close the code blocks:

#end // if (!Shadowed)
#local Ind = Ind+1;
#end // while(Ind < LightAmnt)

Reflection Calculation

// Reflection:
#if (recLev < MaxRecLev \& Coord[closest][1l].y > 0)
#local Pixel =
Pixel + Trace(IP, Refl, recLev+l)*Coord[closest][1l].y;
#end

Another nice aspect of raytracing is that reflection is very easy to calculate.

Here we check that the recursion level has not reached the limit and that the sphere has a reflection compo-
nent defined. If both are so, we add the reflected component (the color of the reflected ray multiplied by the
reflection factor) to the pixel color.
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This is where the recursive call happens (the macro calls itself). The recursion level (recLev) is increased
by one for the next call so that somewhere down the line, the series of Trace() calls will know to stop
(preventing a ray from bouncing back and forth forever between two mirrors). This is basically how the
max tracelevel global setting works in POV-Ray.

Finally, we close the code blocks and return the pixel color from the macro:

#end // else

Pixel
#end

3.10.9 Calculating the image

#debug "Rendering...\n\n"
#declare Image = array[ImageWidth] [ImageHeight]

#declare IndY = 0;
#while (IndY < ImageHeight)
#declare CoordY = IndY/(ImageHeight-1)*2-1;
#declare IndX = 0;
fwhile (IndX < ImageWidth)
#declare CoordX =
(IndX/ (ImageWidth-1)-.5) *2*ImageWidth/ImageHeight;
#declare Image[IndX][IndY] =
Trace (-z*3, <CoordX, CoordY, 3>, 1);
#declare IndX = IndX+1l;
#end
#declare IndY = IndY+1;
#debug concat ("\rDone ", str(100*IndY/ImageHeight,0,1),
"\% (line ", str(IndY,0,0)," out of ",str(ImageHeight,0,0),")")
#end
#debug "\n"

Now we just have to calculate the image into an array of colors. This array is defined at the beginning of
the code above; it is a two-dimensional array representing the final image we are calculating.

Note how we use thedebug stream to output useful information about the rendering process while we are
calculating. This is nice because the rendering process is quite slow and it is good to give the user some
feedback about what is happening and how long it will take. (Also note thattheharacter in the string

of the seconddebug command will work ok only in the Windows version of POV-Ray; for other versions

it may be necessary to convert it tes”.)

What we do here is to go through each "pixel” of the "image” (ie. the array) and for each one calculate the
camera location (fixed tez*3 here) and the direction of the ray that goes through the pixel (in this code the
"viewing plane” is fixed and located in the x-y-plane and its height is fixed to 1).

What the following line:
#declare CoordY = IndY/(ImageHeight-1)*2-1;

does is to scale thendy so that it goes from -1 to 1. It is first divided by the maximum value it gets (which
iS ImageHeight-1) and then it is multiplied by 2 and substracted by 1. This results in a value which goes
from-1to 1.

Thecoordx is calculated similarly, but it is also multiplied by the aspect ratio of the image we are calculating
(so that we do not get a squeezed image).
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3.10.10 Creating the colored mesh

If you think that these things we have been examining are advanced, then you have not seen anything. Now
comes real hard-core advanced POV-Ray code, so be prepared. This could b@&lealiedlly advanced
section

We have now calculated the image into the array of colors. However, we still have to show these color
"pixels” on screen, that is, we have to make POV-Ray to render our pixels so that it creates a real image.

There are several ways of doing this, all of them being more or less "kludges” (as there is currently no way
of directly creating an image map from a group of colors). One could create colored boxes representing each
pixel, or one could output to an ascii-formatted image file (mainly PPM) and then read it as an image map.
The first one has the disadvantage of requiring huge amounts of memory and missing bilinear interpolation
of the image; the second one has the disadvantage of requiring a temporary file.

What we are going to do is to calculate a colored mesh2 which represents the "screen”. As colors are
interpolated between the vertices of a triangle, the bilinear interpolation comes for free (almost).

The structure of the mesh

Although all the triangles are located in the x-y plane and they are all the same size, the structure of the
mesh is quite complicated (so complicated it deserves its own section here).

The following image shows how the triangles are arranged for a 4x3 pixels image:
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Figure 3.77: Triangle arrangement for a 4x3 image

The number pairs in parentheses represent image pixel coordinateso(eg.refers to the pixel at the

lower left corner of the image and, 2) to the pixel at the upper right corner). That is, the triangles will

be colored as the image pixels at these points. The colors will then be interpolated between them along the
surface of the triangles.

The filled and non-filled circles in the image represent the vertex points of the triangles and the lines
connecting them show how the triangles are arranged. The smaller numbers near these circles indicate
their index value (the one which will be created insideithen2).

We notice two things which may seem odd: Firstly there are extra vertex points outside the mesh, and
secondly, there are extra vertex points in the middle of each square.

Let’s start with the vertices in the middle of the squares: We could have just made each square with two
triangles instead of four, as we have done here. However, the color interpolation is not nice this way, as
there appears a clear diagonal line where the triangle edges go. If we make each square with four triangles
instead, then the diagonal lines are less apparent, and the interpolation resembles a lot better a true bilinear
interpolation. And what is the color of the middle points? Of course it is the average of the color of the four
points in the corners.

Secondly: Yes, the extra vertex points outside the mesh are completely obsolete and take no part in the
creation of the mesh. We could perfectly create the exact same mesh without them. However, getting rid
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of these extra vertex points makes our lives more difficult when creating the triangles, as it would make the
indexing of the points more difficult. It may not be too much work to get rid of them, but they do not take
any considerable amount of resources and they make our lives easier, so let’s just let them be (if you want
to remove them, go ahead).

Creating the mesh

What this means is that for each pixel we create two vertex points, one at the pixel location and one shifted
by "0.5” in the x and y directions. Then we specify the color for each vertex points: For the even vertex
points it is directly the color of the correspondent pixel; for the odd vertex points it is the average of the
four surrounding pixels.

Let’'s examine the creation of the mesh step by step:

Creating the vertex points

#default { finish { ambient 1 } }

#debug "Creating colored mesh to show image...\n"
mesh2
{ vertex_vectors
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while (IndY < ImageHeight)
#declare IndX = 0;
#while (IndX < ImageWidth)
<(IndX/ (ImageWidth-1)-.5) *ImageWidth/ImageHeight*2,
IndY/ (ImageHeight-1)*2-1, 0>,
<((IndX+.5)/ (ImageWidth-1)-.5) *ImageWidth/ImageHeight*2,
(IndY+.5)/ (ImageHeight-1) *2-1, 0>
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#end
}

First of all we use a nice trick in POV-Ray: Since we are not using light sources and there is nothing
illuminating our mesh, what we do is to set the ambient value of the mesh to 1. We do this by just making
it the default with thetdefault command, so we do not have to bother later.

As we saw above, what we are going to do is to create two vertex points for each pixel. Thus we know
without further thinking how many vertex vectors there will heagewidth*ImageHeight *2

That was the easy part; now we have to figure out how to create the vertex points themselves. Each vertex
location should correspond to the pixel location it is representing, thus we go through each pixel index
(practically the number pairs in parentheses in the image above) and create vertex points using these index
values. The location of these pixels and vertices are the same as we assumed when we calculated the image
itself (in the previous part). Thus the y coordinate of each vertex point should go from -1 to 1 and similarly
the x coordinate, but scaled with the aspect ratio.

If you look at the creation of the first vector in the code above, you will see that it is almost identical to the
direction vector we calculated when creating the image.

The second vector should be shifted by 0.5 in both directions, and that is exactly what is done there. The
second vector definition is identical to the first one except that the index values are shifted by 0.5. This
creates the points in the middle of the squares.
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The index values of these points will be arranged as shown in the image above.

Creating the textures

texture_list
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while (IndY < ImageHeight)
#declare IndX = 0;
#while (IndX < ImageWidth)
texture { pigment { rgb Image[IndX][IndY] } }
#1f (IndX < ImageWidth-1 \& IndY < ImageHeight-1)
texture { pigment { rgb
(Image [IndX] [IndY]+Image[IndX+1] [IndY]+
Image [IndX] [IndY+1]+Image [IndX+1] [IndY+1])/4 } }
#else
texture { pigment { rgb 0 } }
#end
#declare IndX = IndX+1l;
#end
#declare IndY = IndY+1;
#end
}

Creating the textures is very similar to creating the vertex points (we could have done both inside the same
loop, but due to the syntax of thesh2 we have to do it separately).

So what we do is to go through all the pixels in the image and create textures for each one. The first texture
is just the pixel color itself. The second texture is the average of the four surrounding pixels.

Note: we can calculate it only for the vertex points in the middle of the squares; for the extra vertex points
outside the image we just define a dummy black texture.

The textures have the same index values as the vertex points.

Creating the triangles

This one is a bit trickier. Basically we have to create four triangles for each "square” between pixels. How
many triangles will there be?

Let’s examine the creation loop first:

face_indices
{ (ImageWidth-1)* (ImageHeight-1)*4,
#declare IndY = 0;
#while (IndY < ImageHeight-1)
#declare IndX = 0;
#while (IndX < ImageWidth-1)

#declare IndX = IndX+1l;
#end
#declare IndY = IndY+1;
#end
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The number of "squares” is one less than the number of pixels in each direction. That is, the number
of squares in the x direction will be one less than the number of pixels in the x direction. The same for
the y direction. As we want four triangles for each square, the total number of triangles will then be

(ImageWidth-1) * (ImageHeight-1) *4.

Then to create each square we loop the amount of pixels minus one for each direction.

Now in the inside of the loop we have to create the four triangles. Let's examine the first one:

<IndX*2+ IndY * (ImageWidth*2),
IndX*2+2+IndY * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2)>,
IndX*2+ IndY * (ImageWidth*2),
IndX*2+2+IndY * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2),

This creates a triangle with a texture in each vertex. The first three values (the indices to vertex points) are
identical to the next three values (the indices to the textures) because the index values were exactly the same
for both.

The 1ndx is always multiplied by 2 because we had two vertex points for each pixetramds basically

going through the pixels. Likewisendy is always multiplied byrmagewidth*2 because that is how long a

row of index points is (ie. to get from one row to the next at the same x coordinate we have to advance
ImageWidth*2 in the index values).

These two things are identical in all the triangles. What decides which vertex point is chosen is the "+1”
or "+2" (or "+0” when there is nothing). Forndx "+0” is the current pixel, "+1” chooses the point in the
middle of the square and "+2” chooses the next pixel. frar "+1” chooses the next row of pixels.

Thus this triangle definition creates a triangle using the vertex point for the current pixel, the one for the
next pixel and the vertex point in the middle of the square.

The next triangle definition is likewise:

<IndX*2+ IndY * (ImageWidth*2),
IndX*2+ (IndY+l)* (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2) >,
IndX*2+ IndY * (ImageWidth*2),
IndX*2+ (IndY+l)* (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2),

This one defines the triangle using the current point, the point in the next row and the point in the middle of
the square.

The next two definitions define the other two triangles:

<IndX*2+ (IndY+l)* (ImageWidth*2),
IndX*2+2+ (IndY+1) * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2) >,
IndX*2+ (IndY+1l)* (ImageWidth*2),
IndX*2+2+ (IndY+1) * (ImageWidth*2),
( )

IndX*2+1+IndY * (ImageWidth*2),

<IndX*2+2+IndY * (ImageWidth*2),
IndX*2+2+ (IndY+1) * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2)>,
IndX*2+2+IndY * (ImageWidth*2),
IndX*2+2+ (IndY+1) * (ImageWidth*2),
IndX*2+1+IndY * (ImageWidth*2)
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3.10.11 The Camera-setup

The only thing left is the camera definition, so that POV-Ray can calculate the image correctly:
camera { orthographic location -z*2 look_at 0 }

Why "2"? As the defaultirection vector is<o, 0, 1> and the defaultp vector is<o, 1, 0> and we want
the up direction to cover 2 units, we have to move the camera two units away.



Chapter 4

Questions and Tips

This section contains answers to frequently asked questions about POV-Ray as well as many useful tips not
covered in other parts of this documentation.

While it was current at the time that this POV-Ray documentation help file was created, it will almost
certainly be out of date by the time you are reading this. So, if you do not find an answer to your question
here, please check out the current verion the internet.

If you have some question not answered in this FAQ, do not be afraid to contact thedFAGkK in the
proper group of the POV-Ray news-serrer

4.1 Language Tips and tricks to achieve useful things

4.1.1 How do | make a visible light source?

"How do | make a visible light source?br: "Although | put the camera just in front of my light source, |
cannot see anything. What am | doing wrong?”

A light source in POV-Ray is only a concept. When you add a light source to the scene, you are actually
saying to POV-Ray "hey, there is light coming from this point”. As the name says, it is asighite not

a physical light (like a light bulb or a bright spot like a star). POV-Ray does not add anything to that place

where the light is coming, ie. there is nothing there, only empty space. It is just a kind of mathematical

point POV-Ray uses to make shading calculations.

To make the light source visible, you have to put something there. Thereoiscalike keyword in the
light_source block which allows to easily attach an object to the light source. This object implicitly does
not cast any shadows. You can make something like this:

light_source
{ <0,0,0> color 1
looks_like
{ sphere
{ <0,0,0>,0.1
color { rgb 1 }
finish { ambient 1 }

}

Lhttp://www.povray.org/search/redirect?VFAQ
2http://tag.povray.org/
Snews://news.povray.org
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}
translate <10,20,30>

}

It is a good idea to define both things, the light source and the lok&bject, at the origin, and then
translate them to their right place.

Note also thefinish { ambient 1 }’ which makes the sphere to apparently glow (see also the next ques-
tion).

You can also get visible light sources using other techniques: Media, lens flare (available as 3rd party
include file), glow patch, etc.

4.1.2 How do | make bright objects?

"How do | make bright objects, which look like they are emitting light?”

There is a simple trick to achieve this: Set the ambient value of the object to 1 or higher. This makes
POV-Ray to add a very bright illumination value to the object so the color of the object is in practice taken
as is, without darkening it due to shadows and shading. This results in an object which seems to glow light
by itself even if it is in full darkness (useful to make visible light sources, or small lights like leds which do
not cast any considerable light to their surroundings but can be easily seen even in the darkness).

A more sophisticated method would be using an emitting media inside the object (and making the object
itself transparent or semi-transparent).

4.1.3 How do | move the camera in a circular path?

"How do | move the camera in a circular path while looking at the origin?”
There are two ways to make this: The easy (and limited) way, and the more mathematical way.
The easy way:

camera
{ location <0,0,-10>
look_at 0
rotate <0,clock*360,0>
}

This puts the camera at 10 units in the negative Z-axis and then rotates it around the Y-axis while looking
at the origin (it makes a circle of radius 10).

The mathematical way:

camera

{ location <10*sin(2*pi*clock),0,-10*cos (2*pi*clock)>
look_at 0

}

This makes exactly the same thing as the first code, but this way you can control more precisely the path of
the camera. For example you can make the path elliptical instead of circular by changing the factors of the

sine and the cosine (for example instead of 10 and 10 you can use 10 and 5 which makes an ellipse with the
major radius 10 and minor radius 5).

An easier way to do the above is to use the vrotate() function, which handles the sin() and cos() stuff for
you, as well as allowing you to use more complex rotations.
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camera

{ location vrotate(x*10, y*360*clock)
look_at O

}

To get an ellipse with this method, you can just multiply the result from vrotate by a vector, scaling the
resulting circle. With the last two methods you can also control the_kiokector (if you do not want it
looking just at the origin).

You could also do more complex transformations combining translate, scale, rotate, and matrix transforms
by replacing the vrotate() call with a call of the vtransform() function founduifctions.inc (new in
POV-Ray 3.5).

4.1.4 How do | use an image to texture my object?

The answer to this question can be easily found in the POV-Ray documentation, so | will just quote the
syntax:

pigment
{ image_map
{ gif "image.gif"
map_type 1
}
}

(Note that in order for the image to be aligned properly, either the object has to be located at the origin when
applying the pigment or the pigment has to be transformed to align with the object. It is generally easiest to
create the object at the origin, apply the texture, then move it to wherever you want it.)

Substitute the keyworgi £ with the type of image you are using (if it is not a Glk}a, iff, ppm, pgm,
png or sys.

A map_type 0 gives the default planar mapping.

A map_type 1 gives a spherical mapping (maps the image onto a sphere).

With map_type 2 you get a cylindrical mapping (maps the image onto a cylinder).
Finally map_type 5 is a torus or donut shaped mapping (maps the image onto a torus).

See the documentation for more details.

4.1.5 How can | generate a spline?

"How can | generate a spline, for example for a camera path for an animation?”

POV-Ray 3.6 has a splines feature that allows you to create splines. This is covered in the documentation
and there are demo files showing examples of use. There exist also third party include files for spline
generation that have greater flexibility than the internal splines, for example the spline macros by Chris
Colefax.

4.1.6 How can | simulate motion blur?

The official POV-Ray 3.6 does not support motion blur calculations, but there are some patched versions
which do.

4http://www.geocities.com/ccolefax/spline/index.html
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You can also use other tools to make this. One way to simulate motion blur is calculating a small animation
and then averaging the images together. This averaging of several images can be made with third party
programs, such as the Targa Averager program

4.1.7 How can I find the size of a text object?

"How can | find the size of a text object / center text / justify text?”

You can use thein_extent () andmax_extent () functions to get the corners of the bounding box of any
object. While this is sometimes not the actual size of the object, for text objects this should be fairly
accurate, enough to do alignment of the text object.

4.1.8 How do | make extruded text?

POV-Ray has true type font support built in that allows you to have 3D text in your scenes (see the docu-
mentation about the 'text’ object for more details).

There are also some outside utilities that will import true type fonts and allow user manipulation on the text.
One of these programs is called Elefont.

4.1.9 How do | make an object hollow?

This question usually means "how do | make a hollow object, like a waterglass, a jug, etc”.
Before answering that question, let me explain some things about how POV-Ray handles objects:

Although the POV-Ray documentation talks about "solid” and "hollow” objects, that is not how it actually
works. "Solid” and "hollow” are a bit misleading terms to describe the objects. You can also make an object
"hollow” with that same keyword, but it is not that simple.

Firstly: POV-Ray only handles surfaces, not solid 3D-objects. When you specify a sphere, it is actually just
a spherical surface. Itis only a surface and it is not filled by anything. This can easily be seen by putting
the camera inside the sphere or by clipping a hole to one side of the sphere with the_opgsdvord (so

you can look inside).

People often think that POV-Ray objects are solid, really 3D, with solid material filling the entire object
because they make a 'difference’ CSG object and it seems like the object is actually solid. What the
'difference’ CSG actually does is to cut away a part of the objectaddia new surfacein the place of

the hole, which completely covers the hole, so you cannot see inside the object (this new surface is actually
the part of the second object which is "inside” the first object). Again, if you move the camera inside the
object, you will see that actually it is hollow and the object is just a surface.

So what is all this "solid” and "hollow” stuff the documentation talks of, and what is the "hollow” keyword
used for?

Although objects are actually surfaces, POV-Ray handles them as if they were solid. For example, fog and
media do not go inside solid objects. If you put a glass sphere into the fog, you will see that there is no fog
inside the sphere.

If you add the "hollow” keyword to the object, POV-Ray will no longer handle it as solid, so fog and
atmosphere will invade the inside of the object. This is the reason why POV-Ray issues a warning when
you put the camera inside a non-hollow object (because, as it says, fog and other atmospheric effects may
not work as you expected).

Shttp://iki.filwarp/PovUtils/average/
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If your scene does not use any atmospheric effect (fog or media) there is not any difference between a
"solid” or "hollow” object.

So all the objects in POV-Ray are hollow. But the surface of the objects is always infinitely thin, and there
is only one surface. With real world hollow objects you have always two surfaces: an outer surface and an
inner surface.

Usually people refer to these kind of objects when they ask for hollow objects. This kind of objects are
easily achieved with a 'difference’ CSG operation, like this:

// A simple water glass made with a difference:
difference
{ cone { <0,0,0>,1,<0,5,0>,1.2 }

cone { <0,.1,0»,.9,<0,5.1,0>,1.1 }

texture { Glass }

}

The first cone limits the outer surface of the glass and the second cone limits the inner surface.

4.1.10 How can I fill a glass with water or other objects?

As described in the "hollow objects” question above, hollow objects have always two surfaces: an outer
surface and an inner surface. If we take the same example, a simple glass would be like:

// A simple water glass made with a difference:
#declare MyGlass=
difference
{ cone { <0,0,0>,1,<0,5,0>,1.2 }
cone { <0,.1,0»,.9,<0,5.1,0>,1.1 }
texture { Glass }

}
The first cone limits the outer surface of the glass and the second cone limits the inner surface.

If we want to fill the glass with water, we have to make an object which coincides with the inner surface
of the glass. Note that you have to avoid the coincident surfaces problem so you should scale the "water”
object just a little bit smaller than the inner surface of the glass. So we make something like this:

#declare MyGlassWithWater=
union
{ object { MyGlass }
cone
{ <0,.1,0>,.9,<0,5.1,0>,1.1
scale .999
texture { Water }
}
}

Now the glass is filled with water. But there is one problem: There is too much water. The glass should
be filled only up to certain level, which should be definable. Well, this can be easily made with a CSG
operation:

#declare MyGlassWithWater=
union
{ object { MyGlass }
intersection
{ cone { <0,.1,0>,.9,<0,5.1,0>,1.1 }
plane { y,4 }
scale .999
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texture { Water }
}
}

Now the water level is at a height of 4 units.

4.1.11 How can | bend a object?

There is no direct support for bending in POV-Ray, but you can achieve acceptable bending with the Object
Bender by Chris ColeféX

Some objects can be "bent” by just modelling it with other objects. For example a bent cylinder can be
more easily (and accurately) achieved using the intersection of a torus and some limiting objects.

It might be a bit strange why most renderers support bending but POV-Ray does not. To understand this
one has to know how other renderers (the so-called "scanline-renderers” work):

In the so-called "scanline renders” all objects are modelled with triangle meshes (or by primitives such
as NURBS or bezier patches which can be very easily converted to triangles). The "bending” is, in fact,
achieved by moving the vertices of the triangles.

In this context the term "bending” is a bit misleading. Strictly speaking, bending a triangle mesh would also
bend the triangles themselves, not only move their vertices. No renderer can do this. (It can be, however,
simulated by splitting the triangles into smaller triangles, and so the "bending” effect is more accurate,
although not yet perfect.) What these renderers do is not a true bending in the strict mathematical sense, but
only an approximation achieved by moving the vertices of the triangles.

This difference might sound irrelevant, as the result of this kind of "fake” bending usually looks as good as

a true bending. However, it is not irrelevant from the point of view of POV-Ray. This is because POV-Ray
does not represent the objects with triangles, but they are true mathematical surfaces. POV-Ray cannot
"fake” a bending by moving vertices because there are no vertices to move. In practice bending (and other
non-linear transformations) would require the calculation of the intersection of the object surface and a
curve (instead of a straight line), which is pretty hard and many times analytically not possible.

Note that isosurface objects can be modified with proper functions in order to achieve all kinds of transfor-
mations (linear and non-linear) and thus they are not really bound to this limitation. However, achieving
the desired transformation needs some knowledge of mathematics.

See also the variable ior question.

4.1.12 Can | get non-grainy focal blur?

"The focal blur is very grainy. Can | get rid of the graininess?”

Yes. Setvariance to O (or to a very small value, like for example 1/100000) and choose a high enough
blur_samples. The rendering will probably slow down quite a lot, but the result should be very good.

4.2 Language Things that don’t work as one expects

4.2.1 Using several transparent objects makes them black?

"When | put several transparent objects one in front of another or inside another, POV-Ray calculates a
few of them, but the rest are completely black, no matter what transparency values | give.

Bhttp://www.geocities.com/SiliconValley/Lakes/1434/bend.html
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Short answer: Try increasing thex_trace_level value in theglobal settings block (the default is 5).
Long answer:

Raytracing has a peculiar feature: It can calculate reflection and refraction. Each time a ray hits the surface
of an object, the program looks if this surface is reflective and/or refractive. If so, it shoots another ray from
this point to the appropriate direction.

Now, imagine we have a glass sphere. Glass reflects and refracts, so when the ray hits the sphere, two
additional rays are calculated, one outside the sphere (for the reflection) and one inside (for the refraction).
Now the inside ray will hit the sphere again, so two new rays are calculated, and so on and so on...

You can easily see that there must be a maximum number of reflections/refractions calculated, because
otherwise POV-Ray would calculate that one pixel forever.

This number can be set with thex_trace_level option in theglobal_settings block. The default value
is 5, which is enough for most scenes. Sometimes it is not enough (specially when there are lots of
semitransparent objects one over another) so you have to increase it.

So try something like:

global_settings
{

max_trace_level 10

}

4.2.2 I'm getting color banding in the image

"When | make an image with POV-Ray, it seems to use just a few colors since | get color banding or
concentric circles of colors or whatever where it should not. How can | make POV-Ray to use more colors?”

POV-Ray always writes true color images (ie. with 16777216 colors, ie. 256 shades of red, 256 shades of
green and 256 shades of blue) (this can be changed when outputting to PNG or to B/W TGA but this is
irrelevant when answering to this question).

So POV-Ray is not guilty. It always uses the maximum color resolution available in the target image file
format.

This problem usually happens when you are using windows with 16-bit colors (ie. only 65536 colors, the
so-called hicolor mode) and open the image created by POV-Ray with a program which does not dither the
image. The image is still true color, but the program is unable to show all the colors, but shows only 65536
of them (dithering is a method that "fakes” more colors by mixing pixels of two adjacent colors to simulate
the in-between colors).

So the problem is not in POV-Ray, but in your image viewer program. Even if POV-Ray shows a poor
image while rendering because you have a resolution with too few colors, the image file created will have
full color range.

4.2.3 Rotation behaves very strangely

"When | rotate an object, it dissapears from the image or moves very strangely. Why?”
You need to understand how rotation works in POV-Ray.

Objects aralwaysrotated around the axes. When you rotate, for example, 0, 0>, that means that you
are rotating around the X-axis 20 degrees (counter-clockwise). This is independent of the location of the
object: It always rotates around the axis (what is the center of the object anyways? how do you locate it?).
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This means that if the object is not centered in the axis, it will orbit this axis like the Moon orbits the Earth
(showing always the same side to the Earth).

It is a very good practice to define all objects centered at the origin (ie. its 'center’ is locatedoat>).

Then you can rotate it arbitrarily. After this you can translate it to its proper location in the scene. Itis a
good idea to do this to every object even if you do not rotate it (because you cannot never say if you will
rotate it some day nevertheless).

What if, after all, you have a very complex object defined, but its center is not at the origin, and you want
to rotate it around its center? Then you can just translate it to the origin, rotate it and then translate it back
to its place. Suppose that the center of the object is locatedoato, -30>; you can rotate it this way:

translate -<10,20,-30>
rotate <whatever>
translate <10,20,-30>

4.2.4 The image gets distorted when rendering a square image

"If | tell POV-Ray to render a square image or otherwise change the aspect ratio, the output image is
distorted. What am | doing wrong?”

The problem is that the camera is set to an aspect ratio of 4/3, while the picture you are trying to render has
an aspect ratio of 1/1 (or whatever).

You can set the aspect ratio with the 'right’ keyword in the camera block. The general way to set the correct
aspect ratio for your image dimensions is:

camera
{ right x*ImageWidth/ImageHeight
(other camera settings...)

}

This keyword can also be used to change the handedness of POV-Ray (see the question about Moray and
POV-Ray handedness for more details).

Note: One could think "why does not POV-Ray always set automatically the aspect ratio of the camera
according to the resolution of the image?”.

There is one thing wrong in this thought: It assumes that pixels are always square (ie. the aspect ratio of the
pixels is 1/1). The logic of this behaviour comes clear with an example:

Suppose that you design a scene using a regular 4/3 aspect ratio, as usual (like 320x240, 640x480 and so
on). This image is designed to look good when viewing in a 4/3 monitor (as they all are in home computers).

Now you want to render this image for the Windows startup image. The resolution of the Windows startup
image is 320x400. This resolution has not an aspect ratio of 4/3 and the pixels are not square (the pixels have
an aspect ratio of 1/0.6 instead of 1/1). Now, when you render your image at a resolution of 320x400 with
POV-Ray and show it with the monitor set to that resolution (as it is set at windows startup when the startup
image is shown), the aspect ratio will be the correct one so the image will have the correct proportions (and
it will not be squeezed in any direction).

If you had changed the aspect ratio of the camera to 320/400 (instead of using the default 4/3) you would
not only have got a different image (showing parts of the scene not shown in the original or hiding parts
visible in the original), but it would have looked sqgeezed when shown in the 320x400 screen resolution.

Thus, the camera aspect ratio is the aspect ratio of the final image on screen, when viewed in the final
resolution (which might not be a 4/3-resolution). Since the monitor screen has an aspect ratio of 4/3, this is
the default for the camera as well.
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4.2.5 Why are there strange dark pixels or noise on my CSG object?

This is the typical 'coincident surfaces problem’. This happens when two surfaces are exactly at the same
place. For example:

union

{ box { <-1,0,-1>,<1,-2,1> texture { Texturel } }
box { <-2,0,-2>,<2,-1,2> texture { Texture2 } }
}

The top surface of the first box is coincident with the top surface of the second box. When a ray hits this
area, POV-Ray has to decide which surface is closest. It cannot, since they are exactly in the same place.
Which one it actually chooses depends on the float number calculations, rounding error, initial parameters,
position of the camera, etc, and varies from pixel to pixel, causing those seemingly "random” pixels.

The solution to the problem is to decide which surface you want to be on top and translate that surface just
a bit, so it protrudes past the unwanted surface. In the example above, if we want, for example, that the
second box is at the top, we will type something like:

union
{ box { <-1,0,-1>,<1,-2,1> texture { Texturel } }

box { <-2,0.001,-2>,<2,-1,2> texture { Texture2 } }
}

Note that a similar problem appears when a light source is exactly on a surface: POV-Ray cannot calculate
accurately if it is actually inside or outside the surface, so dark (shadowed) pixels appear on every surface
that is illuminated by this light.

4.2.6 Why won't the textures in stars.inc work with my sky sphere?

The only thing that works with aky_sphere is pigments. Textures and finishes are not allowed. Do not be
discouraged though because you can still use the textures in stars.inc with the following method:

Extract only the pigment statement from the declared textures. For example:

texture

{
pigment { color_map { [0 rgb ..]J[.5 rgb ..][1.0 rgb ..] } scale .. }
finish { .. }

}

becomes:

pigment { color_map { [0 rgb ..]J[.5 rgb ..]J[1.0 rgb ..] } scale .. }

The reason for this is thaky_sphere does not have a surface, it is not an actual object. It is really just a
fancy version of the background feature which extracts a color from a pigment instead of being a flat color.
Because of this, normal and finish features, which depend on the characteristics of the surface of an object
for their calculations, cannot be used. The textures:its.inc were intended to be mapped onto a real
sphere, and can be used something like this:

sphere

{0, 1
hollow // So it doesn’t interfere with any media in the scene
texture { YourSkyTexture }
scale 100000
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4.2.7 When | use filter or transmit with my .tga image map nothing happens.

POV-Ray can only apply filter or transmit to 8 bit 256 color palleted images. Since mgst.png, and

.bmp iMages are 24bit and 16 million colors they do not work with filter or transmit. If you must use filter

or transmit with your image maps you must reduce the color depth to a format the supports 256 colors such
as the.qif image format.

You might also check the POV-Ray docs on using the alpha channghgfiles if you need specific areas
that are transparent.

4.2.8 Isosurface not rendering properly?

"My isosurface is not rendering properly: there are holes or random noise or big parts or even the whole
isosurface just disappears.”

The most common reason for these type of phenomena with isosurfaces is a tec:lgydient value.
Useevaluate to make POV-Ray calculate a propek_gradient for the isosurface (remember to specify a
sensiblenax_gradient even when you usevaluate or else the result may not be correct).

Sometimes a too higitcuracy value can also cause problems even whemiheyradient is ok. If playing
with the latter does not seem to help, try also loweringath&racy.

Remember that specifyingrax_gradient which is too high for an isosurface, although it gives the correct
result, is needlessly slow, so you should always calculate the prepetadient for each isosurface you
make.

Note that there are certain pathological functions wher@#xogradient Or accuracy will help. These
functions usually have discontinuities or similar "ill-behaving” properties. With those you just have to find
a solution which gives the best quality/speed tradeoff. Isosurfaces work best with functions which give
smooth surfaces.

4.3 Language related things

4.3.1 How do I turn animation on?

"How do | turn animation on? | have used thgock -variable in my scene, but POV-Ray still only
calculates one frame.”

The easiest way is to just specify the appropriate command line parameter on the command line or in the
command line field in the rendering settings menu (in the Windows version). For example, if you want to
create 20 frames, type thisk££20

This will create 20 frames with thelock variable going from 0 to 1. The other command line parameters
are found in the POV-Ray documentation.

Ken Tyler has also another good solution for this:

In the directory that you installed POV-Ray into you will find a subdirectory called scenes and another
inside that called animate. You will find several example files showing you how to write your scene to use
the clock variable. You will still need to activate POV-Ray’s animation feature by usingranfile with

the correct info or with command line switches. | personaly like to use the ini file method. If you try this
open the mastefovray. ini file from the tools menu and add the following lines:

;clock=1
;Initial_Frame=1
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;Final_Frame=20
;Cyclic_Animation = on
;Subset_Start_Frame=6
; Subset_End_Frame=9

Save the file and close it. When you need to use the animation feature simply go in and edittheini

file and uncomment out the functions you want to use. At a minimum you will need to useithe1 -

frame andfinal_frame option to make it work. Once you have stopped rendering your series of frames be
sure to comment out the clock variables in the ini file. After you have rendered a series of individual frames
you will still need to compile them into the animation format that you wish to use such as AVI or MPEG.
See our links collection on our websitéor programs that can help you do this. POV-Ray has no internal
ability to do this for you except on the Macintosh platform of the program.

The Mac version normally does not useni files and lacks any command line, but uses a completely
graphical interface instead. To activate animation, choose the render settings item from the Edit menu
(right under "Preferences”, it will be titled "FILENAME Settings”, where FILENAME is the name of your
file), click on the Animation tab, and enter the needed information in the text boxes.

4.3.2 Can POV-Ray use multiple processors?

Short answer: The only way to run POV-Ray on multiple processors is to run several copies of POV-Ray.
Long answer:

Making a program use multiple threads is not as trivial as it may sound. Here are some reasons why it is
quite difficult to make with POV-Ray:

* You cannot do it with standard C (nor C++), and POV-Ray is intended to be very portable. This is not
just anissue of philosophy or purism, POV-Ray is really used on a large variety of different platforms.

» Multithreading is a very complex issue and it is much more difficult to make a bugless multithreaded
program than a single-threaded (there are several things in multithreading, like mutual exclusion
problems, which make the multithreaded program very non-deterministic). It is not impossible,
though, since it has been done (there are patched versions of POV-Ray with multithreading support).
However, it is far from trivial.

» Raytracing is usually thought as an easily threaded problem. You just calculate one pixel and draw it
on screen, independent of the other pixels. However, with advanced techniques, like antialiasing and
specially stochastic global illumination calculation (referred as "radiosity” in POV-Ray’s documen-
tation and syntax) this is not true anymore.

— To speed up antialiasing, a threshold value is used between pixels. If the difference in color
between two pixels is higher than the threshold, then antialiasing is calculated. Of course we
need info from the nearby pixels for this.

— In global illumination calculations lighting values are stored in a spatial tree structure. The
following pixels may use the information stored in this tree for their illumination. This means
that the pixel calculation at the upper left corner may affect on the color of the pixel in the lower
right corner. This is the reason why calculating a radiosity image in parts does not work very
well.

Both problems can probably be solved in some way, but as said, it is far from trivial.
An excellent article about the issue can be found on the Ray Tracing News wéb page

Here is an answer from John M. Dlugosz with useful tips:

"http://povray.org/links/3DAnimation Utilities/
8http://www.acm.org/tog/resources/RTNews/html/rtnv12n2.html#art3
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The POV-Ray rendering engine is a single thread of execution, so when run on a dual Pentium Pro (running
NT4) the CPU indicator only goes up to about 50%. POV does not use more than half the available power
on the machine.

That is the basic issue, though to quibble a bit it is not exactly true: the rendering engine soaks up one whole
CPU, but the editor runs on its own thread, and operating system functions (writing to the file, updating the
display, network activity, system background tasks) run on different threads. This gives a little bit of a
bonus, and the system uses as much as 54% of available MIPS when watching it. More importantly, the
machine is still highly responsive, and editing or other applications continue on without being sluggish.

But for a long render, it is annoying to have one CPU be mostly idle. What can be done to cut rendering
time in half (from 20 hours down to 10, for example)?

The simplest thing is to run two copies of POV on the machine. Have one copy render the top half, and the
other render the bottom half. Then paste the halves together in your picture editor.

One thing to watch out for: do not just fire up two copies and point them at the same INI file and image file.
They will overwrite each other’s output and make a big mess. Instead, you must make sure each is writing
to a different file.

For moderate renders, you might let one copy chug away on the long render, and use a second copy
interactivly to continue development in POV.

4.3.3 Can | get a wireframe render of my scene?

"Is there a way to generate a wireframe output image from a POV scene file?”
Short answer: No.
Long answer:

You have to understand the difference between a modeller like 3D-Studio and POV-Ray in the way they han-
dle objects. Those modellers always use triangle meshes (and some modellers use also NURBS which can
be very easily converted into triangles). Triangle meshes are extremely simple to represent in a wireframe
format: Just draw a line for each triangle side.

However, POV-Ray handles most of the objects as mathematical entities, not triangle meshes. When you
tell POV-Ray to create a sphere, POV-Ray only handles it as a point and a radius, nothing else (besides
the possible matrix transform applied to it). POV-Ray only has a notion of the shape of the object as a
mathematical formula (it can calculate the intersection of a line and the sphere).

For wireframe output there should be a way to convert that mathematical representation of the object into
actual triangles. This is called tesselation.

For some mathematical objects, like the sphere, the box, etc, tesselation is quite trivial. For other entities,
like CSG difference, intersection, etc, it is more difficult (although not impossible). For other entities it
is completely impossible: infinite non-flat surfaces like paraboloids and hyperboloids (well, actually it is
possible if you limit the size of the surface to a finite shape; still the amount of triangles that needs to be
created would be extremely high).

There have been lots of discussions about incorporating tesselation into POV-Ray. But since POV-Ray
is just a renderer, not a modeller, it does not seem to be worth the efforts (adding tesselation to all the
primitives and CSG would belaugejob).

(Of course tesselation could give some other advantages, like the ability to fake non-uniform transforma-
tions to objects like most triangle mesh modellers do...)

If you just want fast previews of the image, you can try to use the quality parameter of POV-Ray. For
example setting quality to 0 (+g0) can give a very fast render. See also the rendering speed question.
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4.3.4 Can | specify variable IOR for an object?

"Can | specify variable IOR for an object? Is there any patch that can do this? Is it possible?”
Short answer: No.
Long answer:

There are basically two ways of defining variable IOR for an object: IOR changing on the surface of the
object and IOR changing throughout inside the object.

The first one is physically incorrect. For uniform IOR it simulates physical IOR quite correctly since for
objects with uniform density the light bends at the surface of the object and nowhere else. However if the
density of the object is not uniform but changes throughout its volume, the light will bend inside the object,
while travelling through it, not only on the surface of the object.

This is why variable IOR on the surface of the object is incorrect and the possibility of making this was
removed in POV-Ray 3.1.

From this we can deduce that a constant IOR is kind of property of the surface of the object while variable
IOR is a property of the interior of the object (like media in POV-Ray). Of course the physically correct
interpretation of this phenomenon is that IOR is always a property of the whole object (ie. its interior), not
only its surface (and this is why IOR is now a property of the interior of the object in POV-Ray); however,
the effect of a constant IOR has effect only at the surface of the object and this is what POV-Ray does when
bending the rays.

The correct simulation for variable IOR, thus, would be to bend the ray inside the object depending on the
density of the interior of the object at each point.

This is much harder to do than one may think. The reasons are similar to why non-uniform transformations
are too difficult to calculate reasonably (as far as | know there exists no renderer that calculates true non-
uniform transformations; mesh modellers just move the vertices, they do not actually transform the object;
a true non-uniform transformation would bend the triangles). Moreover: Non-uniform transformations can
be faked if the object is made of many polygons (you can move the vertices as most mesh modellers do),
but you cannot fake a variable IOR in this way.

Variable IOR is (mostly) impossible to calculate analytically (ie. in a mathematically exact way) at least in
a reasonable time. The only way would be to calculate it numerically (usually by super-sampling).

Media in POV-Ray works in this way. It does not even try to analytically solve the color of the media, but
supersamples the media along the ray and averages the result. This can be pretty inaccurate as we can see
with the media method 1 (the only one which was supported in POV-Ray 3.1). However some tricks can

be used to make the result more accurate without having to spend too much time, for example antialiasing
(which is used by the media method 3). This is a quite easy calculation because the ray is straight, POV-Ray
knows the start and end points of the ray and it knows that it does not intersect with anything along the ray
(so it does not have to make ray-object intersection calculations while supersampling).

Variable IOR is, however, a completely different story. Here the program would have to shoot a LOT of
rays along the path of the bending light ray. For each ray it would have to make all the regular ray-object
intersection calculations. It is like having hundreds or thousands of transparent objects one inside another
(with maxtracelevel set so high that the ray will go through all of them). You can easily test how slow this

is. Itisvery slow.

One could think that "hey, why not just shoot a few tens of rays and then use some kind of antialiasing to
get the fine detalils, like in media method 3.

Well, it might work (I have never seen it tested), but | do not think it will help much. The problem is
the inaccuracy of the supersampling (even when using antialiasing). In media it is not a big problem; if
a very small shadowed area in the media is not detected by the supersampling process, the result will not
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differ very much from the correct one (since the shadowed area was so small it would have diminished the
brightness of that ray just a bit but no more) and it will probably still look good.

With IOR this is not anymore true. With IOR even very, very small areas may have very strong effect in
the end result, since IOR can drastically change the direction of the ray thus making the result completely
different (even very small changes can have great effect if the object behind the current refracting object is
far away).

This can have disastrous effects. The ior may change drastically from pixel to pixel almost at random, not
to talk from frame to frame in an animation.

To get a more or less accurate result lots of rays would be needed; just a few rays is not enough. And
shooting lots of rays is an extremely slow process.

4.3.5 Whatis Photon Mapping?

Photon mapping uses forward raytracing (ie. sending rays from light sources) calculate reflecting and
refracting light (aka. caustics).

The following is from the homepage of the developer (Nathan Kopp):

"My latest fun addition to POV is the photon map. The basic goal of this implementation of the photon map
is to render true reflective and refractive caustics. The photon map was first introduced by Henrik Wann
Jensen. It is a way to store light information gathered from a backwards ray-tracing [sic] step in a data
structure independent from the geometry of a scene.”

It is surprisingly fast and efficient. How is this possible when forward raytracing is so inefficient? For
several reasons:

1. Photon mapping is only used to calculate illumination, ie. lighting values, not to render the actual
scene. Lighting values do not have to be as accurate as the actual rendering (it does not matter if your
reflected light "bleeds” a bit out of range; actually this kind of "bleeding” happens in reality as well
(due to light diffusing from air), so the result is not unrealistic at all).

2. Photon mapping is calculated only for those (user-specified) objects that need it (ie. objects that have
reflection and/or refraction).

3. The rays are not shot to all directions, towards the entire scene, but only towards those specified
objects. Many rays are indeed shot in vain, without them affecting the final image in any way, but
since the total amountof rays shot is relatively small, the rendering time does not get inacceptably
longer.

4. The final image itself is rendered with regular backwards raytracing (the photon mapping is a precal-
culation step done before the actual rendering). The raytracer does not need to use forward raytracing
in this process (it just uses the precalculated lighting values which are stored in space).

As you have seen, for the photon mapping to work in an acceptable way, you have to tell the program which
objects you want to reflect/refract light and which you do not. This way you can optimize a lot the photon
mapping step.

4.4 File Formats

4.4.1 Saving the image to disk.

"I have rendered an image with POV-Ray, but how do | save it to JPG or GIF or any other image format?”

This is a typical problem of people using the Windows version of the program for first time.
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POV-Ray is a raytracer which has only one purpose: To read a source file describing the scene to raytrace
and then calculate it and save it to disk in a supported image format, usually TGA (and optionally PNG,
BMP, etc).

POV-Ray has always had this goal, and still has, and will (desirably) never change. It is mostly command-
line oriented. It supports non-essential things, like showing the image while it is rendering.

A GUI does not change anything. POV-Ray is still POV-Ray, with or without GUI. It takes a source code
and calculates the image and saves it to disk. By default it shows the image while it is raytracing it, but that
is just a secondary feature, non-essential, irrelevant. It can be turned off and POV-Ray will still make its
job.

So the answer to the question is: The imégelready savedon disk.

Usually it is saved in TGA or BMP format (it depends on the settings) with the same name as the source
code (so if the source is nameek1r.pov, the image will be namedsaIr. 162 or cHAIR.BMP OF whatever).

The location is either the same directory where thev-file is or else a common directory for images
(which you can set up in the main povray.ini file).

4.4.2 Can | convert my POV-Ray scenes to another format?

(Answer by Johannes Hubert)

For POV-Ray 2.2: Try Crossroatler if you want to convert to Moray MDL files, try POV2MDE from
Thomas Baier.

For POV-Ray 3.1 and newer: There is unfortunately not much you can do. There is no real versatile program
yet, that can read (and convert) POV-Ray 3.1 scripts (except for POV-Ray itself :-). Your best shots would
be: POV2RIB! if you want to convert to the RIB format. If you know how to program C++, you can get
the ParPov C++ library from the same URL. It is a class-library for reading POV 3.1 scripts and converting
them to C++ objects (it also has been used for POV2RIB).

3DWin from Thomas Baier (see the URL above) converts from the POB format to a lot of other formats.
POB is a special binary POV-Ray format devised by Thomas and is written by a custom-compile version of
POV-Ray 3.0 (get the POB-SDK at the same URL): This POV-Ray version reads POV-scripts and outputs
POB files, which can then be converted by 3DWin. The drawback: Although all objects, textures etc. of the
scene are in the POB file, they are not all recognized by 3DWin. Only triangles and meshes of triangles are
recognized. Everything else in the scene is lost....

4.4.3 How can | convert my scenes from format X to POV-Ray format?

Crossroad¥ can convert a very limited subset of Povray primitives (spheres and triangles work best).
Particularly, it can be used to convert unions of regular (non smooth) triangles to other formats.

Another option is 3DWik.
4.4.4 How do | import all of my textures | created in 3DS Max into POV-Ray?

As POV-Ray supports UV-mapping, textured objects used by renderers such as 3D-Studio can be used by
first converting them with a proper converter. You can find a list of converters and other related software in

Shttp://www.europa.com/ keithr/crossroads
LOhttp://www.th-software.com/
Uhttp://www9.informatik.uni-erlangen.de/"cnvogelg/pov2rib/index.html
Lhttp://www.europa.com/ keithr/crossroads
Bhttp:/www.tb-software.com/



210 Questions and Tips

the links collection on our websité

4.4.5 How can | avoid artifacts and still get good JPEG compression?

(Answer by Peter J. Holzer)
First, you have to know a little bit about how a picture is stored in JPEG format.

Unlike most image formats it does not store RGB values, but YUV values (1 grayscale value and two "color

difference” values) just like they are used in a color TV signal. Since the human eye uses mostly the gray
values to detect edges, one can usually get away with storing the color information at a lower resolution -
an 800x600 JPEG typically has only grayscale information at 800x600, but color information at 400x300.

This is called supersampling.

For each color channel separately, the picture is then divided into little squares and the cosine transform
of each square is computed. A neat feature of this transformation is that if you throw away only a few of
the values, the quality will degrade very little, but the image will compress a lot better. The percentage of
values stored is called the quality.

Finally, the data is compressed.

Most programs only let you change the quality setting. This is fine for photos and photorealistic renderings
of "natural” scenes. Generally, quality values around 75% give be best compromise between quality and
image size.

However, for images which contain very saturated colors, the lower resolution of the color channels causes
visible artifacts which are very similar to those caused by low quality settings. They can be minimized by
setting an extremely high quality (close to 100%), but this will dramatically increase the file size, and often
the artifacts are still visible.

A better method is to turn off supersampling. The higher resolution will cause only a modest increase in
file size, which is more than offset by the ability to use a lower quality setting.

The cjpeg command line utility (which should be available for all systems which have a command line, e.g.,
Linux, MS-DOS, Unix, ...) has an "-sample” to set the sampling factors for all passes.

cjpeg -sample 1x1,1x1,1xl -quality 75 -optimize

should be good default values which have to be changed only rarely.

4.4.6 Why are there no converters from POV to other formats?

"Why are there so many converters from other 3D file formats to POV, but practically no converters from
PQV to other formats?”

Itis a mistake to think that a POV-Ray file is just the same kind of data file as in most other renderers.

The file format of most renderers is just a data file containing numerical values (vertex coordinates, triangle
indices, textures, uv-coordinates, NURBS data...) describing the scene. They usually are very little more
than just numerical data containers.

However, POV-Ray files are much more than just data files. POV-Ray files are actually source code of
the POV-Ray scripting language. The POV-Ray scripting language is by many means a full programming
language (it is Turing-strong). It contains many features typical to programming languages and non-typical
to data files (such as variables, loops, mathematical functions, macros, etc). It has many features to describe
things in a much more abstract way than just plain numbers.

Lhttp://www.povray.org/links/30Programs/Conversiabltilities/
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This is why converting a POV-file to a data file readable by other renderers is so difficult. The converter

program would actually have to "execute”, that is, interpret the scripting language (in the exact same way
as a BASIC or Perl source code is interpreted). Making a scripting language interpreter is a much more
laborious job than just converting numerical data from one format to another.

There is also another problem: POV-Ray describes most of its objects as mathematical entities while most
of other renderers just handle triangles (or NURBS or similar easily tesselable primitives). A converter
would have to make some tesselation in order to convert most POV-Ray primitives to other formats. This
can be a quite laborious job for a converter to make (it would have to practically implement an almost
fully-qualified POV-Ray renderer).

This is why making a full-featured converter from any POV-file to any other format is an almost impossible
task.

4.4.7 Why are triangle meshes in ASCII format?

"Why are triangle meshes in ASCII format? They are huge! A binary format would be a lot smaller. If
POV-Ray can read binary images, why can it not read binary mesh data?”

It is not as simple as you may think.

You cannot compare binary mesh data with image files. Yes, images are binary data, but there is one big
difference: Image files usateger numbers (usually bytes, in some cases 16-bit integers), which can be
easily read in any system.

However, meshes udl®ating point numbers.

It might come as a bit of surprise that it is far from easy to represent them in binary format so that they can
be read in every possible system.

It is very important to keep in mind that POV-Ray is intended to be a very portable program, which should
be compilable in virtually any system with a decent C compiler. This is not just mumbo-jumbo; POV-Ray
IS used in a wide variety of operating systems and computer architectures, including Windows, MacOS,
Linux, (Sparc) Solaris, Digital Unix and so on.

The internal representation of floating point numbers may differ in number of bits and bits reserved for each
part of the number inside the data type in different systems. There is also the infamous big-endian/low-
endian problem (that is, although the floating point numbers were identical in two different systems, they
may be written in different byte-order when writing to a file).

If you try to make carelessly a patch which reads and writes floating point numbers in binary format, you
will probably quickly find that your patch only works in a certain architecture only (eg. PC) and not others.

In order to store floating point numbers so that they can be read in any system, you have to store them in an
universal format. ASCII is as good as any other.

However, you are not completely out of luck when dealing with compressing mesh data. This has been
done befor&.

Since version 3.5, POV-Ray supports a new type of mesh (called mesh2) which stores the mesh data in a
more compact format (similar to the one used in the PCM format described in the abovementioned link, but
with a bit more 'syntax’ around it).

Lhttp://www.geocities.com/ccolefax/pecm.html
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4.5 Utllities, models, etc.

4.5.1 Whatis the best animation program available?

Check the POV-Ray links collection on our webstte

4.5.2 Creating/viewing MPEG-files.

"How can | create/view mpeg-files in Windows/Linux/...?”
See the IRTC Animation FAY.

45.3 Where can | find models/textures?

Check the POV-Ray links collection on our webskte

4.5.4 What are the best modellers for POV-Ray?

Check the POV-Ray links collection on our webie

4.5.5 Any POV-Ray modellers for Mac?

(Answer by Henri Sivonen)
Yes there are. However, a text editor is still needed.
Most of the available modelers are listed on the Official POV-Ray MacOS Info?Page

DOS, Windows and Linux i386 modelers can be used with an Intel PC emulator. With Mac OS X most
Linux-compatible applications with freely available source code can be compiled and then run natively.

4.5.6 Isthere any user gallery of POV-Ray images?

There are literaly hundreds of POV-Ray users galleries. Almost anybody that uses POV-Ray and has a web
page has some sort of picture gallery set up. Look for web page address’s at the bottoms of the messages
posted to the newsgroup comp.graphics.rendering.raytracing and the povray newsgroups.

There are 2 places officially supported by the POV-Team. They are:
- The POV-Ray users gallery located on our web séfver

- On our private news sen/r(not connected with USENET) in the povray.binaries.images newsgroup,
you will find many images posted from other POV-Ray users. There are also discussion groups, and plenty
of sample code and scenes.

18nttp://povray.org/links/3DAnimation Utilities/

Lhttp:/firtc.org/anims/faq.html
8nttp://povray.org/links/POV-Raynclude Macro.and Object Files/Objectand SceneFiles/
Lhttp://povray.org/links/3CPrograms/POV-Ralodelling Programs/
2Ohttp://mac.povray.org/

21http://www.povray.org/

22http://www.povray.org/groups.html
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You should also check the Internet Raytracing Competition homépage

4.5.7 Any good heightfield modellers?

Check the POV-Ray links collection on our websfte

4.5.8 Any easy way of creating trees?

A program called Tree designer by Johannes Hébéstan excellent modelling program for trees.

There are also a several good include files for this purpose. Check out our link collection to Include Macro
and Object File®).

4.6 Rendering speed

4.6.1 Will POV-Ray render faster with a 3D card?

"Will POV-Ray render faster if | buy the latest and fastest 3D videocard?”
No.

3D-cards are not designed for raytracing. They read polygon meshes and then scanline-render them. Scan-
line rendering has very little, if anything, to do with raytracing. 3D-cards cannot calculate typical features
of raytracing as reflections etc. The algorithms used in 3D-cards have nothing to do with raytracing.

This means that you cannot use a 3D-card to speed up raytracing (even if you wanted to do so). Raytracing
makes lots of float number calculations, and this is very FPU-consuming. You will get much more speed
with a very fast FPU than a 3D-card.

What raytracing does is actually this: Calculate 1 pixel color and (optionally) put it on the screen. You will
get little benefit from a fast videocard since only individual pixels are drawn on screen.

4.6.2 How do | increase rendering speed?

This question can be divided into 2 questions:
1) What kind of hardware should | use to increase rendering speed?
(Answer by Ken Tyler)

The truth is the computations needed for rendering images are both complex and time consuming. This is
one of the few program types that will actualy put your processors FPU to maximum use.

The things that will most improve speed, roughly in order of appearance, are:
1. CPU speed
2. FPU speed

23http:/iwww.irtc.org/

24nhttp://povray.org/links/30Programs/HeighEield Modelling_Programsand Utilities/
25http://free.prohosting.com/jhubert/TreeDesigner/
26http://www.povray.org/links/POV-Rainclude Macra.and Object Files/
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3.

Buss speed and level one and two memory cache - More is better. The faster the buss speed the faster
the processor can swap out computations into its level 2 cache and then read them back in. Buss
speed therefore can have a large impact on both FPU and CPU calculation times. The more cache
memory you have available the faster the operation becomes because the CPU does not have to rely
on the much slower system RAM to store information in.

. Memory amount, type, and speed. Faster and more is undoubtably better. Swapping out to the

hard drive for increasing memory should be considered the last possible option for increasing system
memory. The speed of the read/write to disk operation is like walking compared to driving a car.
Here again is were buss speed is a major player in the fast rendering game.

. Your OS and number of applications open. Closing open applications, including background items

like system monitor, task scheduler, internet connections, windows volume control, and all other
applications people have hiding in the background, can greatly increase rendering time by stealing
cpu cycles. Open task manager and see what you have open and then close everything but the absolute
necessities. Other multi-tasking OS’s have other methods of determining open application and should
be used accordingly.

. And lastly your graphics card. This may seem unlikely to you but it is true. If you have a simple 16

bit graphics card your render times, compared to other systems with the same processor and memory
but better CG cards, will be equal. No more no less. If you play a lot of games or watch a lot of mpeg
movies on your system then by all means own a good CG card. If it is rendering and raytracing you
want to do then invest in the best system speed and architecture your money can buy. The graphics
cards with hardware acceleration are designed to support fast shading of simple polygons, prevalent
in the gaming industry, and offer no support for the intense mathematical number crunching that goes
on inside a rendering/raytracing program like Pov-Ray, Studio Max, and Lightwave. If your modeling
program uses OpenGl shading methods then a CG card with support for OpenGL will help increase
the speed of updating the shading window but when it comes time to render or raytrace the image its
support dissapears.

2) How should | make the POV-Ray scenes so that they will render as fast as possible?

These are some things which may speed up rendering without having to compromise the quality of the
scene:

Bounding boxes: Sometimes POV-Ray’s automatic bounding is not perfect and considerable speed
may be achieved by bounding objects by hand. These kind of objects are, for example, CSG differ-
ences and intersections, blobs and poly objects. See also: CSG speed.

Number of light sources: Each light source slows down the rendering. If your scene has many light
sources, perhaps you should see if you can remove some of them without loosing much quality. Also
replace point light sources with spotlights whenever possible. If a light source only lights a little part
of the scene, a spotlight is better than a point light, since the point light is tested for each pixel while
the spotlight is only tested when the pixel falls into the cone of the light.

Area lights are very slow to calculate. If you have big media effects, theyxremelyslow to
calculate. Use as few area lights as possible. Always use adaptive area lights unless you need very
high accuracy. Use spot area lights whenever possible.

When you have many objects with the same texture, union them and apply the texture only once. This
will decrease parse time and memory use. (Of course supposing that it does not matter if the texture
does not move with the object anymore...)

Things to do when doing fast test renderings:
— Use the quality command line parameter (ig).

— Comment out (or enclose with £-statements) the majority of the light sources and leave only
the necessary ones to see the scene.
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— Replace (withtif-statements) slow objects (such as superellipsoids) with faster ones (such as
boxes).

— Replace complex textures with simpler ones (like uniform colors). You can also ugei the-
color statement to do this (it will work when you render with quality 5 or lower, ie. command
line parameterqs).

— Reflection and refraction: When an object reflects and refracts light (such as a glass object)
it usually slows down the rendering considerably. For test renderings turning off one of them
(reflection or refraction) or both should greatly increase rendering speed. For example, while
testing glass objects it is usually enough to test the refraction only and add the reflection only
to the final rendering. (The problem with both reflecting and refracting objects is that the rays
will bounce inside the object until maixacelevel is reached, and this is very slow.)

— If you have reflection/refraction and a very highx_trace_level, try setting the addailout
value to something bigger than the default 1/256.

4.6.3 CSG speed

"How do the different kinds of CSG objects compare in speed? How can | speed them up?”

There is a lot of misinformation about CSG speed out there. A very common allegation is that "merge is
always slower than union”. This statement is not true. Merge is sometimes slower than union, but in some
cases it is even faster. For example, consider the following code:

global_settings { max_trace_level 40 }
camera { location -z*8 look_at 0 angle 35 }
light_source { <100,100,-100> 1 }
merge
{ #declare Ind=0;
#while (Ind<20)
sphere { z*Ind,2 pigment { rgbt .9 } }
#declare Ind=Ind+1;
#end
}

There are 20 semitransparent merged spheres there. A test render took 64 seconds. Substituting 'merge’
with 'union’ took 352 seconds to render (5.5 times longer). The difference in speed is very notable.

So why is 'merge’ so much faster than 'union’ in this case? Well, the answer is probably that the number

of visible surfaces play a very important role in the rendering speed. When the spheres are unioned there
are 18 inner surfaces, while when merged, those inner surfaces are gone. POV-Ray has to calculate lighting
and shading for each one of those surfaces and that makes it so slow. When the spheres are merged, there
is no need to perform lighting and shading calculations for those 18 surfaces.

So is 'merge’ always faster than 'union’? No. If you have completely non-transparent objects, then 'merge’
is slightly slower than 'union’, and in that case you should always use 'union’ instead. It makes no sense
using ‘'merge’ with non-transparent objects.

Another common allegation is "difference is very slow; much slower than union”. This can also be proven
as a false statement. Consider the following example:

camera { location -z*12 look_at 0 angle 35 }
light_source { <100,100,-100> 1 }
difference
{ sphere { 0,2 }
sphere { <-1,0,-1>,2 }
sphere { <1,0,-1>,2 }
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pigment { rgb <1,0,0> }
}

This scene took 42 seconds to render, while substituting the 'difference’ with a 'union’ took 59 seconds (1.4
times longer).

The crucial thing here is the size of the surfaces on screen. The larger the size, the slower to render (because
POV-Ray has to do more lighting and shading calculations).

But the second statement is much closer to the truth than the first one: differences are usually slow to render,
specially when the member objects of the difference are very much bigger than the resulting CSG obiject.
This is because POV-Ray’s automatic bounding is not perfect. A few words about bounding:

Suppose you have hundreds of objects (like spheres or whatever) forming a bigger CSG object, but this
object is rather small on screen (like a little house for example). It would be really slow to test ray-object
intersection for each one of those objects for each pixel of the screen. This is speeded up by bounding
the CSG object with a bounding shape (such as a box). Ray-object intersections are first tested for this
bounding box, and it is tested for the objects inside the box only if it hits the box. This speeds rendering
considerably since the tests are performed only in the area of the screen where the CSG object is located
and nowhere else.

Since it is rather easy to automatically calculate a proper bounding box for a given object, POV-Ray does
this and thus you do not have to do it by yourself.

But this automatic bounding is not perfect. There are situations where a perfect automatic bounding is very
hard to calculate. One situation is the difference and the intersection CSG operations. POV-Ray does what
it can, but sometimes it makes a pretty poor job. This can be specially seen when the resulting CSG object
is very small compared to the CSG member objects. For example:

intersection

{ sphere { <-1000,0,0>,1001 }
sphere { <1000,0,0>,1001 }

}

(This is the same as making a difference with the second sphere inversed)

In this example the member objects extend fren2001,-1001,-100% to <2001,1001,100% although

the resulting CSG object is a pretty small lens-shaped object which is only 2 units wide in the x direction
and perhaps 10 or 20 or something wide in the y and z directions. As you can see, it is very difficult to
calculate the actual dimensions of the object (but not impossible).

In this type of cases POV-Ray makes a huge bounding box which is useless. You should bound this kind of
objects by hand (specially when the it has lots of member objects). This can be done with the bioyinded
keyword.

Here is an example:

camera { location -z*80 look_at 0 angle 35 }
light_source { <100,200,-150> 1 }
#declare test =
difference
{ union
{ cylinder {<-2, -20, 0>, <=2, 20, 0>, 1}
cylinder {<2, -20, 0>, <2, 20, 0>, 1}
}
box {<-10, 1, -10>, <10, 30, 10>}
box {<-10, -1, -10>, <10, -30, 10>}
pigment {rgb <1, .5, .5>}
bounded_by { box {<-3.1, -1.1, -1.1>, <3.1, 1.1, 1.1>} }



4.7 Miscellaneous questions 217

#declare copy = 0;

#while (copy < 40)
object {test translate -20*x translate copy*x}
#declare copy = copy + 3;

#end

This took 51 seconds to render. Commenting out the ’bouryetine increased the rendering time to 231
seconds (4.5 times slower).

4.6.4 Does POV-Ray support 3DNow?

No, and most likely never will.
There are several good reasons for this:

» 3DNow uses single precision numbers while POV-Ray needs (yes, it needs) double precision num-
bers. Single precision is not enough (this has been tested in practice).
(To better understand the difference between single and double precision nhumbers, imagine that you
could represent values between 0 and 1000 with single precision numbers. With double precision
numbers you do not get a scale from 0 to 2000 (as one might think), but from 0 to 1000000. The
difference is enormous and single precision is not precise enough for what POV-Ray does.)

 Adding support for 3DNow (or any other CPU-specific feature) to POV-Ray would make it platform-
dependant and not portable. Of course one could make a separate binary for AMD supporting 3DNow,
but there are only two ways of doing this:

1. Compiling POV-Ray with a compiler which automatically can make 3DNow code from C. As
far as | know, no such compiler exists which converts double precision math used in POV-Ray
to single precision math needed by 3DNow. | do not event know if there is any compiler that
supports 3DNow at all.

2. Changing the source code by hand in order to use 3DNow instructions. This is a whole lot of
work (specially because you will probably have to use inline assembler). The source code of
POV-Ray is not very small. Would it be worth the efforts?

Note: There are a few things in POV-Ray that use single precision math (such as color handling). This is
one field where some optimization might be possible without degrading the image quality.

4.7 Miscellaneous questions

4.7.1 Where do | suggest new features?

"I would like to suggest some new features for the program. Who should | talk to?”

This is best discussed on the Pov news groups (news.povray.org) in both the general news group and the
windows news group. The Pov team does skim through the message posted there and occasionaly impliment
ideas that have been posted by users.

You may also contact any of the POV-Ray T.A.G. members with suggestions, comments, or ideas for
improvements to POV-Ray. You can learn more about the POV-Ray T.A.G. and their contact information
on the TAG web pagé.

27http://tag.povray.org/
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4.7.2 I'm getting a "lllegal grid value in dda _traversal()”

"When | render a height field | get lots of warning messages saying "lllegal grid value intdeersal()”.
How can | correct that?”

(Answer by Jerry Anning)

Basically, you have a ray going "between the cracks” of the height field due to an arithmetic accuracy
problem. Sometimes it does no harm. Sometime you get black dot or line artifacts. | know of no successful
patch so far. | also know no completely reliable workaround. The best bet is to slightly joggle the camera
position and/or angle.

4.7.3 No beep when finished?

"How can | get rid of the beep after POV-Ray has calculated the image”

Usually using ther command-line option should help (POV-Ray will not pause after it has calculated the
image). If you are using the windows version of POV-Ray, you can try Rendédn Completion >
Remove [v] in front of "Beep”.

4.7.4 POV-Ray viruses?

"Are there any POV-Ray viruses out there? Can one be done?”

At the time of writing this documentation, no known viruses or trojans made with the POV-Ray Scene
Description Language (SDL) are known to exist.

Due to the properties of the POV-Ray SDL, writing a working virus (that is, a piece of code which spreads,
without the user knowing, by copying itself to non-infected files) is very difficult, if not impossible to do.
The main obstacle in making a POV-Ray virus is that there is no way for the SDL code to reside in memory,
infecting files when it sees them; another problem is that there is no way to get file listings in the POV-Ray
SDL, so the code cannot infect other .pov files at parse time.

However, trojans (i.e. a malicious piece of code which attempts to harm the system, but will not infect
other files) are much more likely. It is possible with the POV-Ray SDL to open a file and write practically
anything to it. This can be used to cause severe damage to an unprotected file system.

Note, however, that in POV-Ray 3.5 the concept of I/O restrictions was introduced in order to protect the user
from these kinds of malicious scripts. Setting the 1/O restrictions properly will prevent the SDL from being
able to open files for writing (and optionally even for reading). You should check that your copy of POV-Ray
3.5 has these restrictions properly set, especially if you render files not made by you. Note, however, that
not all versions of POV-Ray 3.5 for different platforms may have these restrictions implemented. Consult
section 1 of the POV-Ray 3.5 documentation for more details about the 1/O restrictions.

Regardless of this, it is always a good idea to run only scripts which you have received from trusted sources.
This is particularly true if you are using a version of POV-Ray older than 3.5.

The POV-Ray community consists mostly of benevolent people and it is generally safe to try POV-Ray
scripts made by them. However, it is often better to be safe than to be sorry.

4.7.5 GUI for Unix POV-Ray?

"Does POV-Ray for Unix have a GUI like in Windows?”
No.
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POV-Ray has always been a command-line utility. Even the core code of POV-Ray for Windows is exactly
the same as the generic command-line POV-Ray. The graphical interfaces of the Windows and Mac versions
of POV-Ray are exclusive to them (and non-portable). They are much like separate "add-ons”.

There is no official GUI done for the Unix version of POV-Ray. Some third-parties have tried to make some
GUIs for it (and you might find them in the links collection on our welfitéut it seems to be a general
phenomenon that Unix people like to use just the command-line version with a proper and powerful text
editor (such as Emacs).

| am sorry but there is no advice right now here about how to configure Emacs in order to smoothly handle
POV-Ray file editing, but | might write a page about that some day, when | have the time.

4.8 The shadow line artifact

4.8.1 Whatis the problem?

People often find an annoying problem when applying normal modifier patterns to objects. It is said that
one image tells more than a thousand words, and this saying also applies here. This image shows two cases
where the problem appears:

Figure 4.1: Sometimes odd shadow lines appear on certain objects

» The object in the left of the image is just a regular POV-Ray sphere with a normal modifier made with
the bump pattern.

» The object in right of the image is a mesh of smooth triangles.

As you notice, there are two clear artifacts in the image. The sphere has a straight shadow line which seems
unnatural and the mesh has a non-straight shadow line when it is supposed to have a straight one.

Although the artifacts look quite different in nature, they are, in fact caused by the exact same problem.

What one could expect would be something like this image (do not mind about the bright part under the
triangle mesh; this is explained later).

28http://povray.org/links/



220 Questions and Tips

Figure 4.2: The image one would expect.

4.8.2 What causes the problem?
Let’s start with the sphere with the perturbed normal, since it is easier to explain.

Surface

1 1 Perturbed

intersects surface
here

Figure 4.3: Shadow line test with modified normals

This image shows graphically what happens.
The problem happens in the "dark side” of the object, that is, the side which does not "see” the light source.

Although the surface normal points away from the light source (ie. its angi®@degrees from the light
source), the perturbed normal points towards it (ie. its angke98 degrees) and thus, according to the
normal vector, the light source should illuminate the point in question.

However, when doing the shadow-ray test, POV-Ray sees that the test ray intersects with a surface (in this
case the surface of the same sphere, but at the "other side”). Thus it decides that the surface in question is
shadowing the current point and thus the light source does not illuminate it.

This is what causes the straight shadow exactly where the (non-perturbed) surface normal is exactly at 90
degrees from the light source.

The problem with the mesh of smooth triangles is a bit more difficult, although very similar (and caused by
the exact same problem).

This image shows graphically what happens.
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Figure 4.4: Shadow test of a triangle mesh

Although there is no explicit normal perturbation, the fact that the surface is a mesh of smooth triangles
means that there is an implicit normal perturbation.

In order to get a smooth appearance, each vertex has a normal vector and the normal vector at any point in
the surface of the triangle is calculated by interpolating the normal vectors of the vertices.

Here the problem happens when the shadow line should pass across a triangle and the unperturbed normal
vector of that triangle points away from the light source. As seen in the figure, a triangle that is closer to
the light source will shadow the point in the current triangle (it is not necessarily the adjacent triangle, but

if the mesh is closed, some triangle will surely shadow the point in question).

This means that this unfortunate triangle will be completely shadowed, thus causing a triangular artifact in
the shadow line of the mesh.

Figure 4.5: The shadow line corresponds to the non-smooth mesh.
The image on the left shows more clearly why the shadow line of the smooth triangle mesh is like it appeared
in the first image of this page.

The object at the left is the same triangle mesh, but with flat triangles, and the object at the right is the same
object as in the image at the beginning of this page.

Notice how the shadowed triangles of the flat mesh correspond exactly to the artifacts in the shadow line of
the smooth mesh. The reason for this was explained in the figure above.
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4.8.3 Can this problem be solved?

And how did I correct the problem in the second image at the beginning of this page?

Firstly, do not think that it is a bug in POV-Ray. It is not a bug, but a real problem caused be the lighting
model used in the renderer engine that is quite difficult to surpass. It is not a problem in POV-Ray in
particular, but a problem in raytracing in general. Every raytracer will have this same problem when using
perturbed surface normals (unless there is some fix coded into it).

Perturbed surface normals are used, in fact, to simulate the perturbation of the surface itself. When calculat-
ing the lighting of the object, the surface normal perturbation will give the impression that the surface itself
is perturbed (eg. in the images at the beginning of this page the sphere looks like it has a bumpy surface).

In triangle meshes the normal interpolation is used to simulate curvature of the surface (a curvature which
actually is not there).

However, since the normal vector perturbation does not affect the surface itself in any way, this kind
of artifact will be the price to pay (another one is that although the surface looks bumpy or smooth, its
silhouette will still look straight or polygonized, but this usually is not such a big problem).

This is a real problem that happens even to the best. For example, check this IRTC winnéP.iiNatjee
the straight shadow lines on the rocks (specially in the closest rock)?

However, there are certain things that can be done to alleviate the problem.

4.8.4 Possible solutions?

1) So what did | do to get the second image at the beginning of this page?
| just made the objects shadowless. This gets rid of the problem of the surface shadowing the wrong point.

This, of course, has severe problems. Since the object does not cast shadows anymore, it probably cannot
be used in any real scene (although making the rocks shadowless in the IRTC winning image mentioned
above would have perhaps helped the image a lot without making it too unrealistic).

With smooth triangle meshes it also introduces another artifact, which can be seen in the second image at
the beginning of the page. | do not know the exact mechanism of this artifact but it is a direct consequence

of the mesh being shadowless (it may have something to do with the fact that smooth triangles are double-
illuminated in POV-Ray).

2) Perhaps a future version of POV-Ray or one of its patches may introduce a way to stop self-shadowing
(while still casting shadows on other objects).

This would alleviate the problem of the completely shadowless object since this object could be used in real
scenes and they will cast shadows on other objects and they will not have the shadow line artifact.

However, this solution applies only to a few range of objects (mainly convex objects). Objects where
self-shadowing is essential (imagine a coffee cup, for example) will still have problems.

3) | have proposed this sophisticated algorithm to get rid of the problem:
When doing shadow ray tests, do the following:

1. Make the regular shadow ray test, which gets all the intersections of the ray with all the surfaces that
are between the current point and the light source.

2. Look if in the current point the unperturbed normal vector points away from the light source and the
perturbed normal vector points towards the light source.

29http://oz.irtc.org/ftp/pub/stills/1998-10-31/running.jpg
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3. If so, check if the closest intersection point of the shadow ray belongs to the current object.
4. If so, remove that intersection point from the list.

If we want to be more sure, we could also check if we are hitting the "inside” of the surface at this closest
intersection point and only then remove it. This might be necessary for non-closed surfaces.

This algorithm will eliminate the shadowline artifact without eliminating shadowing and self-shadowing of
the object.

It has its defects, though:

1. For example, if the camera is inside the object in question (and all the light sources are outside), we
would expect to get a completely shadowed view of the surface. However, if the surface has perturbed
normal, we will see some illuminated parts of the surface. However, | think that this problem is quite
irrelevant in the vast majority of scenes (and it should be possible to turn the fix off anyways).

2. It has several problems which can happen with non-convex objects (thanks to Ron Parker to pointing
this out). The object can shadow itself with more than one surface. If it shadows itself from the
outside (eg. a coffee cup), there is no problem, but if it "shadows itself” from the inside (eg. a coffee
cup upside down) this shadow will be seen in an unrealistic way in the outermost surface of the object.
There might not be any easy way to detect, which one is the case.

3. Another problem similar to the above is that if there is another object inside this object we are
calculating, that another object will itself also "cast a shadow” on the surface (this might be possible
to fix by ignoring all the objects inside the current object; this is possible to do in a rather simple way;
however, it is does not work in all cases).

4. We still get the same artifact in triangle meshes as is shown in the second image at the beginning of
the page. However, | am sure that this problem could be fixed as well (although | may be wrong, of
course).

4.9 Smooth triangle artifact

4.9.1 What is the problem?

There is a peculiar problem with smooth triangles which shows as a lighting artifact in certain cases. This

can happen in individual smooth triangles, meshes with smooth triangles and smooth heightfields. The
problem also manifests itself when using the slope pattern in the same situation. This image shows the two
cases:

- A
4-...I---ll..L

Figure 4.6: Lighting and slope pattern artifacts in a smooth triangle

The source code of this image is the following:

camera { right x*4 location <0,1,-5> look_at 0 angle 35 }
light_source { y*100, 1 }
light_source { -y*100, x }

smooth_triangle
{ <-.5,0,-1>,<-1,1,-1>, <.5,0,-1>,<1,1,-1>, <0,0,1>,<0,1,1>
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pigment { rgb 1 }
translate -x*.6

}

smooth_triangle

{ <-.5,0,-1>,<-1,1,-1>, <.5,0,-1>,<1,1,-1>, <0,0,1>,<0,1,1>
pigment { slope y color_map { [0 rgb z][l rgb x+y] } }
finish { ambient 1 }
translate x*.6

}

The triangle at the left is a regular smooth triangle which is illuminated by a white light source from above.

There is also a red light source illuminating the triangle from below. As you can see, the farther part of the
triangle is wrongly illuminated as red. No part of the triangle should be illuminated by the red light source

because the upper side of the triangle is nowhere facing down.

The triangle at the right is the same smooth triangle with a slope pattern applied to it, which goes from
blue (in the negative y direction) to yellow (in the positive y direction). Lighting has been eliminated by
specifying a high ambient. As all the parts of the upper side of the triangle are pointing upwards, the whole
triangle should be colored with shades of yellow, but as you can see, the same farther part is wrongly colored
blue.

(If you guessed that the problem happens when the normal vector of the triangle is pointing away from the
camera, then you guessed right.)

4.9.2 What causes the problem?

The problem is caused by the rendering algorithm used in POV-Ray. The following text is quite technical,
so if you just want to read about possible solutions to this problem, you can skip to the next subsection.

The problem is that the rendering engine assumes that objects returngmmrmal vector for the given
point in their surface. For an object to render correctlynitstgive the exact normal vector (ie. a vector
which is exactly perpendicular to the surface at that point).

Smooth meshes and heightfields do not do this. They return normal vectors which are not perpendicular to
the actual surface. This causes errors in the rendering.

What happens is that when the rendering engine shoots a ray and it hits the surface of an object, the engine
asks the object "what is the normal vector at this point in your surface?”. Now, if the angle between the
returned normal vector and the ray vector is less than 90 degrees (that is, the normal vector points away
from the point of view of the starting point of the ray), then the engine reverses the returned normal vector.
This is essential for the lighting to work properly (if the normal is not reversed in this case, you would
get all kind of errors in lighting, ie. surfaces which are illuminated from behind when they should not, or
surface which are not illuminated even though they are facing a light source).

This assumes that the normal vector returned by the objedriseanormal vector, and it works perfectly
when this is so.

However, if the object returns an erroneous normal vector, ie. a vector which is not perpendicular to the
surface, rendering errors can occur.

Smooth triangles and heightfields do this, and the price to pay are the artifacts in the lighting in certain
situations.

The artifact is produced when the true normal vector would have an angle larger than 90 degrees with the
ray, but the the actual vector returned by the object has an angle smaller than 90 degrees with the ray. In this
case the rendering engine reverses the normal vector even though it should not. This is because it assumes
that it is the true normal vector when in fact it is not.
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This problem could be solved by making the decision of inverting the returned normal vector according to
the true normal vector of the surface instead of the returned vector. However, due to the internal imple-
mentation of the rendering engine in the current POV-Ray 3.5, doing this is not trivial. It may be fixed in
POV-Ray 4.0, where the rendering engine will be written again and this kind of things can be taken into
account from the very beginning.

4.9.3 Can this problem be solved?

You can get rid of the lighting artifact by applyinguble_illuminate to the object in question. When a
surface is double illuminated, it does not matter which way its normal points - it will always be illuminated
regardless of which side the light source is. Of course it should not matter that the object is now illuminated
from both sides. If this is a problem, then the problem is not easily solvable.

Note that in the example given at the beginning of this section this solution does not work: It would
illuminate the whole triangle with both light sources! However, this solution works well with closed triangle
meshes, where the inner side of the mesh is shadowed by the mesh itself. However, if you afe_using
shadow in the object (for example to get rid of shadow line artifacts), new problems can arise in the lighting
(such as bright parts in places where there should not be any; these are all cause by this same problem).

The slope pattern is more problematic and there is no generic solution which will work in all cases. Fortu-
nately the most common use of the slope pattern is in heightfields, and there a solution is possible:

If you are having this problem in a smooth heightfield, the solution is to mirror the_ocoéqr (or whatever
map you are using) around 0.5. This way it does not matter if the normal is reversed. That is, if you had
something like this in a heightfield:

slope y color_map

{ [0.50 rgb <.5,.5,.5>] // rock
[0.75 rgb <.8,.4,.1>] // ground
[1.00 rgb <.4,1,.4>] // grass

}

you simply have to mirror the map around 0.5, ie. add the values from 0 to 0.5 in reverse order:

slope y color_map

{ [0.00 rgb <.4,1,.4>] // grass
0.25 rgb <.8,.4,.1>] // ground
0.50 rgb <.5,.5,.5>] // rock
0.75 rgb <.8,.4,.1>] // ground
1.00 rgb <.4,1,.4>] // grass

}

Besides this you should, of course, appbyble_illuminate to the heightfield in order to get the proper
lighting.
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Chapter 5

Appendices

5.1 POV-Ray User License

POV-Ray License Agreement

GENERAL LICENSE AGREEMENT

FOR PERSONAL USE

Persistence of Vision Ray Tracer™(POV-Ray™)
Version 3.6 License

and Terms & Conditions of Use

version of 7 June 2004

(also known as POVLEGAL.DOC)

Please read through the terms and conditions of this license carefully. This license is a binding legal
agreement between you, the 'User’ (an individual or single entity) and Persistence of Vision Raytracer
Pty. Ltd. ACN 105 891 870 (herein also referred to as the "Company”), a company incorporated in the state
of Victoria, Australia, for the product known as the "Persistence of Vision Ray Tracer™”, also referred to
herein as "POV-Ray™".

YOUR ATTENTION IS PARTICULARLY DRAWN TO THE DISCLAIMER OF WARRANTY AND
NO LIABILITY AND INDEMNITY PROVISIONS. TO USE THE PERSISTENCE OF VISION RAY
TRACER ("POV-RAY”) YOU MUST AGREE TO BE BOUND BY THE TERMS AND CONDITIONS
SET OUT IN THIS DOCUMENT. IF YOU DO NOT AGREE TO ALL THE TERMS AND CONDI-
TIONS OF USE OF POV-RAY SET OUT IN THIS LICENSE AGREEMENT, OR IF SUCH TERMS
AND CONDITIONS ARE NOT BINDING ON YOU IN YOUR JURISDICTION, THEN YOU MAY
NOT USE POV-RAY IN ANY MANNER. THIS GENERAL LICENSE AGREEMENT MUST ACCOM-
PANY ALL POV-RAY FILES WHETHER IN THEIR OFFICIAL OR CUSTOM VERSION FORM. IT
MAY NOT BE REMOVED OR MODIFIED. THIS GENERAL LICENSE AGREEMENT GOVERNS
THE USE OF POV-RAY WORLDWIDE. THIS DOCUMENT SUPERSEDES AND REPLACES ALL
PREVIOUS GENERAL LICENSES.

INTRODUCTION

This document pertains to the use of the Persistence of Vision Ray Tracer™(also known as POV-Ray™). It
applies to all POV-Ray program source files, executable (binary) files, scene files, documentation files, help
files, bitmaps and other POV-Ray files contained in official Company archives, whether in full or any part
thereof, and are herein referred to as the "Software”. The Company reserves the right to revise these rules
in future versions and to make additional rules to address new circumstances at any time. Such rules, when
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made, will be posted in a revised license file, the latest version of which is available from the Company
website at http://www.povray.org/poviegal.html .

USAGE PROVISIONS

Subject to the terms and conditions of this agreement, permission is granted to the User to use the Software
and its associated files to create and render images. The creator of a scene file retains all rights to any
scene files they create, and any images generated by the Software from them. Subject to the other terms
of this license, the User is permitted to use the Software in a profit-making enterprise, provided such profit
arises primarily from use of the Software and not from distribution of the Software or a work including the
Software in whole or part.

Please refer to http://www.povray.org/povlegal.html for licenses covering distribution of the Software and
works including the Software.

The User is also granted the right to use the scene files, fonts, bitmaps, and include files distributed in the
INCLUDE and SCENESINCDEMO sub- directories of the Software in their own scenes. Such permission
does not extend to any other files in the SCENES directory or its sub-directories. The SCENES files are
for the User’s enjoyment and education but may not be the basis of any derivative works unless the file in
question explicitly grants permission to do such.

This licence does not grant any right of re-distribution or use in any manner other than the above. The
Company has separate license documents that apply to other uses (such as re-distribution via the internet or
on CD); please visit http://www.povray.org/povlegal.html for links to these. In particular you are advised
that the sale, lease, or rental of the Software in any form without written authority from the Company is
explicitly prohibited.

COPYRIGHT

Copyright ©1991-2003, Persistence of Vision Team.
Copyright ©2003-2004, Persistence of Vision Raytracer Pty. Ltd.
Windows version Copyright ©1996-2003, Christopher Cason.

Copyright subsists in this Software which is protected by Australian and international copyright laws. The
Software is NOT PUBLIC DOMAIN.

Nothing in this agreement shall give you any rights in respect of the intellectual property of the Company
and you acknowledge that you do not acquire any rights in respect of such intellectual property rights. You
acknowledge that the Software is the valuable intellectual property of the Company and that if you use,
modify or distribute the Software for unauthorized purposes or in an unauthorized manner (or cause or
allow the forgoing to occur), you will be liable to the Company for any damages it may suffer (and which
you acknowledge it may suffer) as well as statutory damages to the maximum extent permitted by law and
also that you may be liable to criminal prosecution. You indemnify the Company and the authors of the
Software for every single consequence flowing from the aforementioned events.

DISCLAIMER OF WARRANTY

This Software is provided on an "AS IS” basis, without warranty of any kind, express or implied, including
without limitation, any implied warranties of merchantability, fithess for a particular purpose and non-
infringement of intellectual property of any third party. This Software has inherent limitations including
design faults and programming bugs. The entire risk as to the quality and performance of the Software is
borne by you, and it is your responsibility to ensure that it does what you require it to do prior to using it
for any purpose (other than testing it), and prior to distributing it in any fashion. Should the Software prove
defective, you agree that you alone assume the entire cost resulting in any way from such defect.

This disclaimer of warranty constitutes an essential and material term of this agreement. If you do not or
cannot accept this, or if it is unenforceable in your jurisdiction, then you may not use the Software in any
manner.
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NO LIABILITY

When you use the Software you acknowledge and accept that you do so at your sole risk. You agree
that under no circumstances shall you have any claim against the Company or anyone associated directly or
indirectly with the Company whether as employee, subcontractor, agent, representative, consultant, licensee
or otherwise ("Company Associates”) for any loss, damages, harm, injury, expense, work stoppage, loss of
business information, business interruption, computer failure or malfunction which may be suffered by
you or by any third party from any cause whatsoever, howsoever arising, in connection with your use or
distribution of the Software even where the Company were aware, or ought to have been aware, of the
potential of such loss. Damages referred to above shall include direct, indirect, general, special, incidental,
punitive and/or consequential.

This disclaimer of liability constitutes an essential and material term of this agreement. If you do not or
cannot accept this, or if it is unenforceable in your jurisdiction, then you may not use the Software.

INDEMNITY

You indemnify the Company and Company Associates and hold them harmless against any claims which
may arise from any loss, damages, harm, injury, expense, work stoppage, loss of business information,
business interruption, computer failure or malfunction, which may be suffered by you or any other party
whatsoever as a consequence of any act or omission of the Company and/or Company Associates, whether
negligent or not, arising out of your use and/or distribution of the Software, or from any other cause
whatsoever, howsoever arising, in connection with the Software. These provisions are binding on your
estate, heirs, executors, legal successors, administrators, parents and/or guardians.

This indemnification constitutes an essential and material term of this agreement. If you do not or cannot
accept this, or if it is unenforceable in your jurisdiction, then you may not use the Software.

HIGH RISK ACTIVITIES

This Software and the output produced by this Software is not fault-tolerant and is not designed, manu-
factured or intended for use as on-line control equipment in hazardous environments requiring fail-safe
performance, in which the failure of the Software could lead or directly or indirectly to death, personal
injury, or severe physical or environmental damage ("High Risk Activities”). The Company specifically
disclaims any express or implied warranty of fithess for High Risk Activities and explicitly prohibits the
use of the Software for such purposes.

MISCELLANEOUS

This Agreement constitutes the complete agreement concerning this license. Any changes to this agreement
must be in writing and may take the form of notifications by the Company to you, or through posting
notifications on the Company website. THE USE OF THIS SOFTWARE BY ANY PERSON OR ENTITY

IS EXPRESSLY MADE CONDITIONAL ON THEIR ACCEPTANCE OF THE TERMS SET FORTH
HEREIN.

Except where explicitly stated otherwise herein, if any provision of this Agreement is found to be invalid
or unenforceable, the invalidity or unenforceability of such provision shall not affect the other provisions
of this agreement, and all provisions not affected by such invalidity or unenforceability shall remain in full
force and effect. In such cases you agree to attempt to substitute for each invalid or unenforceable provision
a valid or enforceable provision which achieves to the greatest extent possible, the objectives and intention
of the invalid or unenforceable provision. The validity and interpretation of this agreement will be governed
by the laws of Australia in the state of Victoria (except for conflict of law provisions).

CONTACT INFORMATION

License inquiries can be made via email; please use the following address (but see below prior to emailing)

team-coord-[three-letter month]-[four-digit year]@povray.org



230 Appendices

for example,team-coord-jun-2004@povray.org should be used if at the time you send the email it is the
month of June 2004. The changing email addresses are necessary to combat spam and email viruses. Old
email addresses may be deleted at our discretion.

Note that the above address may change for reasons other than that given above; please check the version
of this document on the WWW at http://www.povray.org/povlegal.html for the current address. Note that
your inability or failure to contact us for any reason is not an excuse for violating this licence.

Do NOT send any attachments of any sort other than by prior arrangement. EMAIL MESSAGES INCLUD-
ING ATTACHMENTS WILL BE DELETED UNREAD.

The following postal address is only for official license business. Please note that it is preferred that initial
queries about licensing be made via email; postal mail should only be used when email is not possible, or
when written documents are being exchanged by prior arrangement.

Persistence of Vision Raytracer Pty. Ltd.
PO Box 407

Williamstown,

Victoria 3016

Australia

5.2 Citing POV-Ray in Academic Publications

To reference POV-Ray (e.g. in academic papers), you may use one of the below:

Persistence of Vision Pty. Ltd. (2004)
Persistence of Vision Raytracer (Version 3.6)
[Computer software].
Retrieved from http://www.povray.org/download/

or

Persistence of Vision Pty. Ltd. (2004).

Persistence of Vision (IM) Raytracer.

Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia.
http://www.povray.org/

5.3 The POV-Team

Following is a list in alphabetic order of all people who have ever worked on the POV-Ray Team or who
have made a note-worthy contribution.

Current POV-Team Members

Chris Cason
Member 1993-, Team leader 1999-, windows version author, other contributions

Nicolas Calimet
3.6 UNIX development

Dale C. Brodin
Alpha & Beta tester, forum support

Alexander Enzmann
POV-Ray 1.0/2.0/3.0 developer



5.3 The POV-Team 231

Thorsten Fohlich
Mac developer

Christoph Hormann
3.6 UNIX development

Alan Kong
Alpha & Beta tester, forum support

Nathan Kopp
Photons, u/v mapping, other contributions.

Lutz Kretzschmar
Moray author, MS-DOS 24-bit VGA, part of the anti-aliasing code

Ron Parker
Core code, jack-of-all-trades

Anton Raves
Alpha & Beta tester, Mac contributor

Erkki Sondergaard
Alpha & Beta tester, 3.0 Scene files

Past POV-Team Members and other Contributors

Claire Amundsen
Tutorials for the POV-Ray User Guide

Steve Anger
POV-Ray 2.0/3.0 developer

Randy Antler
MS-Dos display code enhancements

John Baily
RLE targa code

Eric Barish
Ground fog code

Thomas Baier
3.1 team member, tester

Dieter Bayer
Wrote sor, lathe, prism, media and many other features

Anthony Bennett
Scene files, documentation

Kendall Bennett
PMODE library support, paletted display code in Windows version

Steve Bennett
GIF support

Thomas Bily
Implicit and parametric surfaces

Eric Brown
no_.image, nareflection, orient and circular ardight

Matthew Corey Brown
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pigment function, warps

David Buck
Original author of DKBTrace, POV-Ray 1.0 developer

Edward Coffey
Fadecolor

Aaron Collins
Co-author of DKBTrace 2.12, POV-Ray 1.0 developer

Chris Dailey
POV-Ray 3.0 developer

Steve Demlow
POV-Ray 3.0 developer

Andreas Dilger
Former Unix coordinator, Linux developer, PNG support

Joris van Drunen Littel
Mac beta tester

Dan Farmer
POV-Ray 1.0/2.0/3.0 developer, author of many features, sample scenes, and textures

Daniel Fenner
Splines

Hans-Detlev Fink
Slope pattern

Charles Fusner
Blob, lathe and prism tutorial tutorials for the POV-Ray User Guide

Mark Gordon
Unix developer

Jerome Grimbert
Mapping warps

David Harr
Mac balloon help and palette code

Michael Hazelgrove
Scene files

Jimmy Hoeks
Original Help file for v3.0 Windows user interface

Christoph Hormann
Scene & include files, documentation, insert menu

Chris Huff
Object pattern, Interior texture, inverse transform

Bob Hughes
Scene and include files, insert menu

Ingo Janssen
Scene & include files, documentation

Mike Hough
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Spherical camera, Media method 2, mapping for bicubigpatch

Rune S. Johansen
Scene & include files, documentation

Greg M. Johnson
Scene files

Terry Kanakis
Camera fix

Kari Kivisalo
Ground fog code

Tor Olav Kristensen
Scene files

Jochen Lippert
Spheresweep

Charles Marslett
MS-Dos display code

Pascal Massimino
Fractal objects

Jim McElhiney
POV-Ray 3.0 developer

Robert A. Mickelsen
Artist, 3.0 docs contributor

Mike Miller
Artist, scene files, stones.inc

Fabien Mosen
Scene & include files

Douglas Muir
Bump maps, height fields

Joel Newkirk
Former Amiga developer

Juha Nieminen
Fractal patterns

Jim Nitchalé
Mac version, scene files (Jim - famous also for his anti-spam crusades - passed away on 5 June
1998 but his contributions to POV-Ray and responsible use of the internet will not be forgotten)

Paul Novak
Texture contributions

Wolfgang Ortmann
Splines

Dave Park
Amiga support, AGA video code

Redaelli Paolo

Lhttp://www.igorlabs.com/jim/jim.html
2http://www.wired.com/news/culture/0,1284,12832,00.html
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Former Amiga developer

David Payne
RLE targa code

Ansgar Philippsen
Smooth color triangle

Bill Pulver
Time code

Dan Richardson
3.0 Docs

Tim Rowley
PPM and Windows-specific BMP image format support

Eduard Schwan
Former Mac version coordinator, mosaic preview, docs

Daniel Skarda
Implicit and parametric surfaces

Robert Skinner
Noise functions

Yvo & René Smellenbergh
Clock & Imagesize keywords

Ryoichi Suzuki
Isosurfaces

Zsolt Szalavari
Halo code which was later turned into media

Scott Taylor
Leopard and onion textures

Gilles Tran
Scene files

John VanSickle
Cells pattern

Mark Wagner
Splines

Timothy Wegner
Fractal objects, PNG support

Drew Wells
POV-Ray 1.0 developer, POV-Ray 1.0 team coordinator

Daren Scot Wilson
Dispersion

Chris Young
Team leader 1992-1999, parser code, other contributions too numerous to list here
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5.3.1 Contacting the Authors

The POV-Team is a collection of volunteer programmers, designers, animators and artists meeting via the
internet at http://www.povray.org/. The POV-Team’s goal is to create freely distributable, high quality
rendering and animation software written in C that can be easily ported to many different computers. If you
have any questions about POV-Ray, please visit our web site for the latest contact information, or see the
online version of POVLEGAE for the current team coordinators address (this changes from time to time
whenever too many email spammers harvest the address).

If you have a question regarding commercial use or distribution of POV-Ray, please contact Chris Cason,
the development team coordinator, via the above method. Please do not email us directly for technical
support; we no longer give support via email as too many people abused the privilege.

See our web sifeand particularly our news servefor online peer support. The news server has a moder-
ated bug reporting newsgroup; please however discuss the issue in the povray’gavesgtoup prior to
lodging a bug report as we may already know of the issue (or it might not even be a bug). Also, there are
several FAQ's on the POV web site, and in general the folks in the newsgroups think rather poorly of users
who post complaints without reading the FAQ’s first.

Finally, there is also a dedicated Technical Assistance Group consisting of a hnumber of trusted, experienced
POV-Ray users.

5.3.2 The TAG

Established by the POV-Team in late 1999, the TAG (Technical Assistance Group) is made up of selected
members of the POV-Ray user community. The purpose of the TAG is to aid the POV-Team in supporting
users of POV-Ray around the world, using the collective knowledge of the group to answer users’ POV-Ray
questions and to bring POV-Ray related matters to the attention of the POV-Team as required.

With their range of experiences in particular areas of computing and graphics, TAG members will always
try to provide an answer to users’ POV-Ray questions as best they can. If members of the TAG feel a
question or suggestion merits the attention of the POV-Team, they will redirect queries to the appropriate
members of the Team for consideration.

TAG members are not members of the POV-Team. But they are, however, an official conduit between us
and the outside world. They have direct access to all members of the POV-Team. They have the right to
speak on our behalf on the POV-Ray news server and on any official mailing lists that we set up for this
purpose. Not everything they say will be official; only when they sign it as such. They can still act as
'themselves’ and have their own opinions at all other times.

The TAG has its own website
Technical Assistance Group Members

Chris Colefax
Email: chris.colefax [at] tag.povray.org

Chris Huff
Email: chris.huff [at] tag.povray.org

Ingo Janssen
Email: ingo [at] tag.povray.org

Shttp://www.povray.org/povlegal.html
4http://www.povray.org/
Shttp://www.povray.org/groups.html
6news://news.povray.org/povray.general
http://tag.povray.org/
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Juha Nieminen
Email: warp [at] tag.povray.org

Peter Popov
Email: peter.popov [at] tag.povray.org

Margus Ramst
Email: margus.ramst [at] tag.povray.org

Gilles Tran
Ema”:qilles.tran [at] tag.povray.org

Ken Tyler
Email: ken.tyler [at] tag.povray.org

5.3.3 POV-Ray 3.6 Development

Main 3.6 developers:
Chris Cason
Thorsten Fohlich
Nathan Kopp
Contributors of patches in POV-Ray 3.6

Nicolas Calimet
UNIX development

Christoph Hormann
UNIX development

Wilodzimierz 'ABX’ Skiba
Various fixes, uv-mapping for parametric and torus

Massimo Valentini
Various fixes

5.4 Whatto do if you don't have POV-Ray

This documentation assumes you already have POV-Ray installed and running however the POV-Team does
distribute this file by itself in various formats including online on the internet. If you do not have POV-Ray

or are not sure you have the official version or the latest version, then the following sections will tell you
what to get and where to get it.

5.4.1 Which Version of POV-Ray should you use?

POV-Ray can be used under Windows 9x/NT/2000, Apple Power PC, x86 Linux, UNIX and other plat-
forms. The latest versions of the necessary files are available on our welarsitéhrough various CD
distributions. See section "Where to Find POV-Ray Files” for more info. Dos, Windows 3.1, Windows for
Workgroups, SunOS and Amiga are no longer supported. If your platform is not supported and you are
proficient in compiling source code programs written in C/C++, then you may like to retrieve the source for
POV-Ray from our website and attempt to built it yourself. Note that the POV-Team provides absolutely

8http://www.povray.org/
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no support for building POV-Ray from the source code, especially on platforms that we do not officially
support.

Microsoft Windows 9x/NT/2000/XP

The 32-bit Windows version runs under Windows 95, Windows 98, NT, 2000 and XP or newer. Required
hardware and software: Minimum - 486/100 with 32mb RAM and Windows 95. Disk space - 20 megabytes.
Recommended - Pentium 4 or equivalent with at least 256mb of RAM running Windows 2000 or XP,
equipped with an XGA display (or better) running in true color mode.

The forthcoming 64-bit Windows version will initially run under Windows XP 64-bit edition on AMD64-
based machines, or those compatibile with them. The recommended configuration has not yet been deter-
mined but as a rule of thumb we would suggest at least 256mb RAM (512mb preferred).

Note: accelerated graphics hardware will not improve performance. Nor will MMX or 3D Now. These
technologies are not aimed at raytracing. SSE2-equipped CPU’s (such as the Pentium 4) will enhance
performance if and only if an SSE2-enabled version of POV-Ray for Windows is installed. If we make
such a version available it will be provided on our website and FTP server using a different name than that
mentioned below.

Required POV-Ray files: User archive POVWIN36.EXE - a self-extracting archive containing the program,
sample scenes, standard include files and documentation.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious and adventurous.
POVWIN_S.ZIP — The C/C++ source code for POV-Ray for Windows, contains generic parts and Windows
specific parts. It does not include sample scenes, standard include files and documentation so you should
also get the executable archive as well. POV-Ray can only be compiled using C/C++ compilers that create
32-bit Windows applications.

We currently support VC++ v7 (v6 withot work due to compiler issues with certain C++ features), Borland
C++, Open Watcom, MinGW, and DJGPP (BJGPP 2.04 or later), and the Intel C++ Compiler version
8. Support for both Intel and Microsoft's C++ compiler for AMD64 is also in the works and will be
forthcoming in a later source code release (once we release an official 64-bit version of POV-Ray for
Windows).

Note that no matter which compiler you use, you will need to obtain the HTML Help API toolkit from
Microsoft's web site (unless you already have it installed). This toolkit contains header files and libraries
required to compile POV-Ray for Windows.

Note: while we know for certain that the code will work with VC++ v7 and the Intel compiler v8, the others
mentioned above may need some tweaking since we do not regularly test with them and it is possible some
later code changes may have broken the build.

Linux for Intel x86

The PC-Linux version should run on any GNU/Linux distribution based on the kernel 2.2 series or above
using the ELF 32-bit format for executables. The binary is fully static, meaning that it has no external
dependencies to system or third-party libraries. It includes support for two kinds of display: the standard
text-based display and the graphics display using either the X Window System or the SVGA library.

Required hardware and software: An Intel Pentium-compatible CPU (i586 or better) and at least 32 MB of
RAM. About 20 MB of disk space to install the program, its documentation, scenes and standard include
files. A text editor capable of editing plain ASCII text files. Graphic file viewer capable of viewing image
formats such as PNG, TIFF, PPM or TGA.
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Required POV-Ray files: povlinux-3.6.tgz or povlinux-3.6.tar.gz - archive containing an official binary
combining text, SVGALIib and X Window displays. Also contains sample scenes, standard include files
and documentation in HTML and plain ASCII text.

Recommended: Intel Pentium 4 or AMD Athlon XP (faster the better) with 128 MB (text console) / 256
MB (X Window running a window manager) or more RAM. A recent GNU/Linux distribution with kernel
2.4.x or above running KDE 3.x for full POV-Ray integration in the window manager. Alternatively, SVGA
display preferably with VESA interface and high color or true color ability.

Note: accelerated graphics hardware will not improve performance.

Optional: povray-3.6.tgz or povray-3.6.tar.gz - archive containing the generic UNIX/Linux C++ source
code of POV-Ray for UNIX. The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous. The archive contains generic Unix parts and Linux specific parts (namely: support for
SVGAIib). This package does also include sample scenes, standard include files and documentation. For
displaying purposes, the SVGAIlib and X11 (X Window) includes and libraries can be used by the source
code of POV-Ray for UNIX. See the section related to the generic Unix source code package for further
details.

Apple Macintosh

The Macintosh version runs under Apple’s Mac OS operating system version 8.6 (it may run on 8.1 and
8.5 as well, but we do not support POV-Ray 3.6 running on Mac OS 8.1 and 8.5) or newer with CarbonLib

1.0.4 or newer installed. Note that we no longer support 68K based Macintosh computers. POV-Ray 3.6
requires a Power Macintosh!

A Power Macintosh is any iMac, iBook, Mac G3, Mac G4, Mac G5, Cube, any older Mac with a four digit
model number (i.e. 5200, 6300, 7200, 8100, 9600) and any third party computer running Mac OS 8.1 or
later. Mac OS X 10.2 or later are supported but for maximum render speed it is not recommended to use
Mac OS X.

Required hardware and software: Power Macintosh computer with at least 16 MB of free RAM. Mac OS 8.6
or newer with CarbonLib 1.0.4 or newer installed CarbonLib 1.0.4. About 20 MB free disk space to install
and an additional 5-10 MB free space for your own creations (scenes and images). Graphic file viewer utility
capable of viewing Mac PICT, GIF and perhaps TGA and PNG formats (the shareware GraphicConverter
applications is good.)

Required POV-Ray files: POVPMAC.SIT or POVPMAC.HQX - a Stufflt archive containing the native
Power Macintosh application, sample scenes, standard include files and documentation.

Recommended: Power Macintosh G3 with 64 MB or more of free RAM. Mac OS 9.0.4 or newer with
CarbonLib 1.6 (works with Mac OS 8.6 or newer) to access all features of the Mac frontend. CarbonLib
1.6 is available for free download from Apple in the software update section of the Apple website. Color
monitor with millions of colors.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious and adventurous.
POV-Ray can be compiled using Metrowerks CodeWarrior Pro 7.2 (for other compilers no project or make
files are provided). Read the file "How to compile!” before compiling. There is no other support or help
for compiling the source code! POVMACS.SIT or POVMACS.HQX - The full C source code for POV-Ray

for Macintosh. Contains generic parts and Macintosh specific parts. It does not include sample scenes,
standard include files and documentation so you should also get the executable archive as well.
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Generic Unix

Because Unix runs on a wide variety of hardware and CPUs, the POV-Team cannot provide executable
versions for every kind of Unix systems. We distribute a generic, portable C++ source code suitable for
running on Unix or Unix-like platforms. You will need a recent C++ compiler which follows the ISO C++
standard as close as possible, and (optionally) the X11 and/or SVGA include files and libraries (SVGAIlib
is for GNU/Linux based systems). Although we provide source code for generic Unix systems, we do not
provide technical support on how to compile the program. Support may be obtained from the POV-Ray user
community on the dedicated POV-Ray newsgroups (povray.unix at news.povray.org).

Required hardware and software: A UNIX operating system with 32 MB of RAM. A recent C++ compiler,
a working make utility and Bourne-compatible shell; see the INSTALL file in the package for details.
Graphic file viewer capable of viewing e.g. PNG, TIFF, PPM or TGA formats. A text editor capable of
editing plain ASCII text files.

Required POV-Ray files: povray-3.6.tgz or povray-3.6.tar.gz - the C++ source code of POV-Ray for UNIX.
Contains generic parts and UNIX/Linux specific parts. The package includes sample scenes, standard
include files and documentation in HTML and plain text ASCII format.

Recommended: Math co-processor. 128 MB (text console) / 256 MB (X Window running a window
manager) or more RAM.

Optional: The X Window System (e.g. XFree86) to be able to display the image while rendering. The X
Window System is available on most UNIX platforms nowadays. On GNU/Linux platforms, the SVGAIlib
library can be an alternative to the X Window System, as it allows to display the rendered image directly on
the console screen.

All Versions

Each executable archive includes full documentation for POV-Ray itself as well as specific instructions
for using POV-Ray with your type of platform. All versions of the program share the same ray-tracing
features like shapes, lighting and textures. In other words, an MS-Dos-PC can create the same pictures
as a Cray supercomputer as long as it has enough memory. The user will want to get the executable that
best matches their computer hardware. In addition to the files listed above, the POV-Team also distributes
the user documentation in two alternate forms. Note this is the same documentation distributed in other
archives but in a different format. This may be especially useful for MS-Dos or Unix users because their
documentation is plain ASCII text only. POVUSER.PDF - Tutorial and Reference documentation in Adobe
Acrobat PDF format. Requires Adobe Acrobat Reader available for Windows 3.x, Windows 95/98/NT, Mac
and some Unix systems. POVHTML.ZIP - Archive containing Tutorial and Reference documentation in
HTML for viewing with any internet browser.

See the section "Where to Find POV-Ray Files” for where to find these files. You can contact those sources
to find out what the best version is for you and your computer.

5.4.2 Where to Find POV-Ray Files

The latest versions of the POV-Ray software are available from the following sources.
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World Wide Website www.povray.org

The internet home of POV-Ray is reachable on the World Wide Web via the address http://www.povray.
orgP and via ftp as ftp://fitp.povray.orfl. Please stop by often for the latest files, utilities, news and images
from the official POV-Ray internet site. The POV-Team operates its own news Seovethe internet with
several news groups related to POV-Ray and other interesting programs.

Books, Magazines and CD-ROMs

If you would like to print our documentation, it is available in a number of formats that are designed for
printing. In particular, PDF, postscript, and TeX. See the POV-Ray website for more details.

Unfortunately all English language books on POV-Ray are out of print and there are no plans to reprint them.
However there are now several POV-Ray books available in Japanese. Many popular computer magazines
have been authorized to distribute POV-Ray on cover CD’s. From time to time we, the makers of POV-Ray,
will ourselves make CDROM's available, either direct from our website or from authorized distributors.
See the our websitéfor more information, as that location will always contain the most up-to-date details.

5.5 Suggested Reading

Beside the POV-Ray material mentioned in "Books, Magazines and CD-ROMs” there are several good
books or periodicals that you should be able to locate in your local computer book store or your local
university library.

1. "An Introduction to Ray tracing” Andrew S. Glassner (editor)
ISBN 0-12-286160-4; Academic Press; 1989

2. "Realistic Image Synthesis Using Photon Mapping” Henrik Wann Jensen
ISBN: 1568811470; AK Peters; July 2001

3. "3D Artist” Newsletter, "The Only Newsletter about Affordable PC 3D Tools and Techniques”)
Publisher: Bill Allen; P.O. Box 4787; Santa Fe, NM 87502-4787; (505) 982-3532

4. "Image Synthesis: Theory and Practice” Nadia Magnenat-Thalman and Daniel Thalmann;
Springer-Verlag; 1987

5. "The RenderMan Companion” Steve Upsitill;
Addison Wesley; 1989

6. "Graphics Gems” Andrew S. Glassner (editor);
Academic Press; 1990

7. "Fundamentals of Interactive Computer Graphics” J. D. Foley and A. Van Dam;
ISBN 0-201-14468-9; Addison-Wesley 1983

8. "Computer Graphics: Principles and Practice (2nd Ed.)” J. D. Foley, A. van Dam, J. F. Hughes;
ISBN 0-201-12110-7; Addison-Wesley; 1990

9. "Computers, Pattern, Chaos, and Beauty” Clifford Pickover;
St.Martin’s Press;

Shttp://www.povray.org/
10%tp://ftp.povray.org/
Uhttp://www.povray.org/groups.html
Lhttp://www.povray.org/



5.5 Suggested Reading 241

10. "SIGGRAPH Conference Proceedings”;
Association for Computing Machinery Special Interest Group on Computer Graphics

11. "IEEE Computer Graphics and Applications”; The Computer Society;
10662, Los Vagueros Circle; Los Alamitos, CA 90720

The POV-Teamo longer recommendsbooks from CRC Press. Go read Eric's commeritaty find out

why.

Bhttp://mathworld.wolfram.com/ericsommentary.html
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looks like, tutorial, 31
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blob, 80
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Normal Modifiers

using, 111
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tutorial, 112
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describing, 13
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all versions, 41
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Pattern Modifiers

using, 108
Patterns, 33
phase

tutorial, 163
phong

tutorial, 115
pigment

tutorial, 106
Pigment and Patterns

using, 107
Pigment Maps

using, 110

working with, 118
pigmentmap

tutorial, 110
Pitfalls

CSG, 26
plane

tutorial, 16
Pointlight Source

the, 26
poly

tutorial, 97
polygon

tutorial, 75
POV-Ray Legal Document, 227
pov-ray license, 227
POVINI environment variable, 43
POVLEGAL, 227
POVRAYOPT environment variable, 43
prism

tutorial, 54

Questions and Tips, 195

Radiosity
tutorial, 150
with conventional lighting, 151
without conventional lighting, 155
Radiosity performance considerations, 159
Rainbow
increasing translucency of, 141
simple, 139
the, 139
using an arc, 142
rainbow
tutorial, 139
Ray-Tracing
what is, 2
reference, 230
Reflection
using, 116

Right-Handed coordinate system, 12

Shadowless Lights

using, 31
Shapes

basic, 15

other, 77

polygon based, 67

spline based, 45
Sky

with a color gradient, 131
Sky Sphere

the, 131
sky_sphere

tutorial, 131
sor

tutorial, 52
Special Textures

limitations of, 129
spheresweep

tutorial, 59
Spline

new tricks, 54
Splines

understanding the concept of, 47
Spotlight Source

the, 28
Standard Include Files

adding, 12
superellipsoid

tutorial, 103
Surface Highlights

using, 115
Surfaces

co-incident, 26
Switches

command-line, 41

Tapering Conic Sweeps, 57
text

tutorial, 65
Texture Maps

working with, 119
Texture Options

advanced, 106

simple, 33
texturemap

tutorial, 119
Textures

pre-defined, 34
The Left-Handed coordinate system, 11
Thin-Film Interference, 117
Tiles
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CSG, 22
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user license, 227

variable ior, 207
VFAQ, 195



